6 research outputs found

    Auf dem Weg zur individualisierten Medizin - Grid-basierte Services für die EPA der Zukunft.

    Get PDF
    Personalized Medicine is of paramount interest for many areas in Medical Informatics. Therefore genotype data as well a phenotype data about patients have to be available. This data will be stored in Electronic Health Records or – patient controlled - in Personal Health Records. As the amount of (raw) data is rising continuously, methods for a secure data administration have to be found. Grid Services offer data storage, can support data retrieval and the presentation of the data. The basic security services could be provided by the German health professional infrastructure, but there are many security challenges to be faced

    Exploring workflow interoperability for neuroimage analysis on the SHIWA platform

    No full text
    Neuroimaging is a field that benefits from distributed computing infrastructures (DCIs) to perform data processing and analysis, which is often achieved using Grid workflow systems. Collaborative research in neuroimaging requires ways to facilitate exchange between different groups, in particular to enable sharing, re-use and interoperability of applications implemented as workflows. The SHIWA project provides solutions to facilitate sharing and exchange of workflows between workflow systems and DCI resources. In this paper we present and analyse how the SHIWA Platform was used to implement various cases in which workflow exchange supports collaboration in neuroscience. The SHIWA Platform and the implemented solutions are described and analysed from a “user” perspective, in this case workflow developers and neuroscientists. We conclude that the platform in its current form is valuable for these cases, and we identify remaining challenges

    Structured, Harmonized, and Interoperable Integration of Clinical Routine Data to Compute Heart Failure Risk Scores

    No full text
    Risk prediction in patients with heart failure (HF) is essential to improve the tailoring of preventive, diagnostic, and therapeutic strategies for the individual patient, and effectively use health care resources. Risk scores derived from controlled clinical studies can be used to calculate the risk of mortality and HF hospitalizations. However, these scores are poorly implemented into routine care, predominantly because their calculation requires considerable efforts in practice and necessary data often are not available in an interoperable format. In this work, we demonstrate the feasibility of a multi-site solution to derive and calculate two exemplary HF scores from clinical routine data (MAGGIC score with six continuous and eight categorical variables; Barcelona Bio-HF score with five continuous and six categorical variables). Within HiGHmed, a German Medical Informatics Initiative consortium, we implemented an interoperable solution, collecting a harmonized HF-phenotypic core data set (CDS) within the openEHR framework. Our approach minimizes the need for manual data entry by automatically retrieving data from primary systems. We show, across five participating medical centers, that the implemented structures to execute dedicated data queries, followed by harmonized data processing and score calculation, work well in practice. In summary, we demonstrated the feasibility of clinical routine data usage across multiple partner sites to compute HF risk scores. This solution can be extended to a large spectrum of applications in clinical care
    corecore