552 research outputs found

    Anti-phase locking in a two-dimensional Josephson junction array

    Full text link
    We consider theoretically phase locking in a simple two-dimensional Josephson junction array consisting of two loops coupled via a joint line transverse to the bias current. Ring inductances are supposed to be small, and special emphasis is taken on the influence of external flux. Is is shown, that in the stable oscillation regime both cells oscillate with a phase shift equal to π\pi (i.e. anti-phase). This result may explain the low radiation output obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let

    Dynamic surface critical behavior of isotropic Heisenberg ferromagnets: boundary conditions, renormalized field theory, and computer simulation results

    Full text link
    The dynamic critical behavior of isotropic Heisenberg ferromagnets with a planar free surface is investigated by means of field-theoretic renormalization group techniques and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed. The relevant boundary terms of the action of the associated dynamic field theory are identified, the implied boundary conditions are derived, and the renormalization of the model in d<6d<6 bulk dimensions is clarified. Two distinct renormalization schemes are utilized. The first is a massless one based on minimal subtraction of dimensional poles and the dimensionality expansion about d=6d=6. To overcome its problems in going below d=4d=4 dimensions, a massive one for fixed dimensions d≤4d\le 4 is constructed. The resulting renormalization group (or Callan Symanzik) equations are exploited to obtain the scaling forms of surface quantities like the dynamic structure factor. In conjunction with boundary operator expansions scaling relations follow that relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar \emph{static} bulk and surface exponents. To test the predicted scaling forms and scaling-law expressions for the critical exponents involved, accurate computer-simulation data are presented for the dynamic surface structure factor. These are in conformity with our predictions.Comment: Revtex4-file with 4 figures included as eps-files, 21 pages in print-format, typos corrected, to appear in Phys. Rev. B, July

    Critical Casimir Effect in 3He-4He films

    Full text link
    Universal aspects of the thermodynamic Casimir effect in wetting films of 3He-4He mixtures near their bulk tricritical point are studied within suitable models serving as representatives of the corresponding universality class. The effective forces between the boundaries of such films arising from the confinement are calculated along isotherms at several fixed concentrations of 3He. Nonsymmetric boundary conditions impose nontrivial concentration profiles leading to repulsive Casimir forces which exhibit a rich behavior of the crossover between the tricritical point and the line of critical points. The theoretical results agree with published experimental data and emphasize the importance of logarithmic corrections.Comment: 12 pages, 4 figures, submitted to the Phys. Rev. Let

    Theory of phase-locking in generalized hybrid Josephson junction arrays

    Full text link
    A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid Josephson junction arrays is extended to a class of generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as well as an inductive component. This class of arrays is of special interest, because the internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we obtain formulas for the flux-dependent frequency including flux-induced switching processes between the in-phase and anti-phase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.

    Electron Refrigeration in the Tunneling Approach

    Full text link
    The qualities of electron refrigeration by means of tunnel junctions between superconducting and normal--metal electrodes are studied theoretically. A suitable approximation of the basic expression for the heat current across those tunnel junctions allows the investigation of several features of the device such as its optimal bias voltage, its maximal heat current, its optimal working point, and the maximally gained temperature reduction. Fortunately, the obtained results can be compared with those of a recent experiment.Comment: 4 pages, 4 Postscript figures, uses eps

    Monte Carlo simulation results for critical Casimir forces

    Full text link
    The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is presented to determine them for films via Monte Carlo simulations of lattice models. The method is based on an integration scheme of free energy differences. Our results for the Ising and the XY universality class compare favourably with corresponding experimental results for wetting layers of classical binary liquid mixtures and of 4He, respectively.Comment: 14 pages, 5 figure
    • …
    corecore