41 research outputs found

    Telomerase RNA TLC1 Shuttling to the Cytoplasm Requires mRNA Export Factors and Is Important for Telomere Maintenance

    Get PDF
    SummaryTelomerases protect the ends of linear chromosomes from shortening. They are composed of an RNA (TLC1 in S. cerevisiae) and several proteins. TLC1 undergoes several maturation steps before it is exported into the cytoplasm to recruit the Est proteins for complete assembly. The mature telomerase is subsequently reimported into the nucleus, where it fulfills its function on telomeres. Here, we show that TLC1 export into the cytoplasm requires not only the Ran GTPase-dependent karyopherin Crm1/Xpo1 but also the mRNA export machinery. mRNA export factor mutants accumulate mature and export-competent TLC1 RNAs in their nuclei. Moreover, TLC1 physically interacts with the mRNA transport factors Mex67 and Dbp5/Rat8. Most importantly, we show that the nuclear export of TLC1 is an essential step for the formation of the functional RNA containing enzyme, because blocking TLC1 export in the mex67-5 xpo1-1 double mutant prevents its cytoplasmic maturation and leads to telomere shortening

    Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1

    Get PDF
    The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR-like RNA-binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post-transcriptional regulation in these processes. SR (serine–arginine)-rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1-GFP is predominantly nuclear, but also co-fractionates with translating ribosomes. The non-phosphorylatable slr1-6SA-GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1-6SA-GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1-6SA-GFP hyphal tip foci is reduced in the absence of the mRNA-transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport

    Identification of Gbp2 as a novel poly(A)(+) RNA-binding protein involved in the cytoplasmic delivery of messenger RNAs in yeast

    No full text
    Important progress in understanding messenger RNA export from the nucleus could be achieved by increasing the list of proteins that are involved in this process. Here, we present the identification of Gbp2 as a novel shuttling RNA-binding protein in Saccharomyces cerevisiae. Nuclear import of Gbp2 is dependent on the receptor Mtr10 and the serine/arginine-specific protein kinase Sky1. Deletion of the genes encoding both of these proteins or disruption of two of the arginine/serine repeats each shifts the steady-state localization of Gbp2 to the cytoplasm. Interestingly, deletion of MTR10 only also causes an increase in poly(A)(+) RNA binding by Gbp2, suggesting a role of Mtr10 in the dissociation of Gbp2 from mRNA in the cytoplasm. The nuclear export of Gbp2 is always coupled to mRNA export and is dependent on continuous RNA polymerase II transcription and mRNA-export factors. Although GBP2 is not essential for normal cell growth, overexpression of this gene is toxic and causes a nuclear retention of bulk poly(A)(+) RNA. Together, our findings clearly show an involvement of Gbp2 in mRNA transport. In addition, as a non-essential protein, Gbp2 also has the interesting potential to be spatially or temporally regulated

    Vergleichende Analysen der nukleär/zytoplasmatischen Exporteigenschaften von SR-ähnlichen Proteinen und ihre regulatorische Funktion im mRNA Spleißing-Prozess

    No full text
    Eukaryontische Zellen zeichnen sich durch ihre Kompartimentierung in Zytoplasma und Zellkern aus, die eine regulierte Genexpression ermöglicht. Im Zellkern erfolgt die Transkription der Gene in prä-mRNAs, die nach extensiver Prozessierung zur Export kompetenten mRNA im Ribonukleoprotein-Komplex („messenger ribonucleoprotein particle“ = mRNP) heranreifen. Die SR-ähnlichen mRNA Bindeproteine Npl3p, Gbp2p und Hrb1p assoziieren während der Transkription mit der mRNA im Zellkern und Npl3p interagiert mit dem Export Rezeptor Mex67p-Mtr2p, der die Export-kompetente mRNA durch die Kernporen-Komplexe der Kernmembran in das Zytoplasma transportiert. Dort erfolgt an den Ribosomen die Proteintranslation anhand der mRNA kodierten genetischen Information. Npl3p ist in vielen Saccharomyces cerevisiae Stämmen ein essentielles Protein und Mutationen führen zu mRNA Export-Defekten. In einem weltweiten Deletionsprojekt wurde eine überlebensfähige NPL3-Deletion im Stammhintergund BY4741 hergestellt. Interessanterweise sind in npl3∆ keine signifikanten mRNA Export Defekte vorhanden, was auf eine weitere, bisher unbekannte Funktion von NPL3 hindeutet. In Lokalisationsstudien wurden jedoch nukleäre Export-Defekte der ribosomalen prä-60S, nicht aber der 40S Untereinheit in npl3∆-Zellen nachgewiesen. Npl3p interagiert physikalisch sowohl über das ribosomale Protein Rpl25p als auch über die 25S rRNA mit der prä-60S Untereinheit. Eine Funktion von Npl3p in der Prozessierung des ribosomalen Vorläufers ist aufgrund von nicht detektierten rRNA Prozessierungsdefekten und nukleolaren Mislokalisationen in npl3∆ unwahrscheinlich. Npl3p interagiert mit den Faktoren der Export kompetenten prä-60S Untereinheit Nmd3p und dem ebenfalls im prä-60S Export agierenden Export-Rezeptor Mex67p. Eine Deletion von NPL3 beeinflußt jedoch nicht die Rekrutierung dieser prä-60S Exportfaktoren zur ribosomalen Untereinheit. Da Npl3p die prä-60S Untereinheit physikalisch bindet und seine Deletion nukleäre Export-Defekte hervorruft, wirkt Npl3p als unabhängiger Exportadapter im prä-60S Transportprozess. Npl3p hat das Potential den Kontakt zwischen der prä-60S Untereinheit und den Kernporen-Komplexen über eine physikalische Interaktion mit dem Nup60p assoziierten Mlp1p zu vermitteln. In einem zweiten Kapitel dieser Arbeit erfolgte die vergleichende Analyse der Exporteigenschaften von Gbp2p, Hrb1p und Npl3, welche erstmalig eine Verbindung zum Spleißing-Prozess aufzeigt. In einem „Screen“ wurden die Spleißingfaktor-Mutanten prp8-908/988 und prp17-Q336* identifiziert, die starke nukleäre Export-Defekte von Gbp2p und Hrb1, nicht aber von Npl3p hervorrufen. GBP2 und HRB1 Deletionen interagieren genetisch mit diesen Spleißingfaktor-Mutanten der Spleißing Spätphase, während eine NPL3 Deletion weder genetisch noch physikalisch mit diesen Faktoren interagiert. Gbp2p und Hrb1p zeigen Protein-Protein Wechselwirkungen mit Prp17p und mit Prp43p des postspleißosomalen Komplexes. Die nukleären Mislokalisationen von Gbp2p und Hrb1p in Spleißing-faktor Mutanten der Spleißing Spätphase beruhen auf eine starke Störung der mRNA Bindung, die in RNA-Co IP Studien ermittelt wurden. Für Gbp2p und Hrb1p wurde in RIP-Chip und qRT-PCR-Studien eine präferentielle Bindung für mRNAs identifiziert, die Intronsequenzen enthalten. Marginale Spleißing Defekte, aber signifikante Proteinexpressionsabnahmen Intron-haltiger Gene wurden vor allem in der Doppel-Deletion gbp2∆ hrb1∆ nachgewiesen. Gbp2p und Hrb1p interagieren mit dem Export-Rezeptor Mex67p und sind somit als neue mRNA Export Adapter identifiziert worden. In Spleißingfaktor-Mutanten sind diese Adapter-Rezeptor Bindungen gestört, wodurch der Export von ungespleißten mRNAs vermutlich zurückgehalten wird. Gbp2p und Hrb1p zeigen eine Verbindung zum Kernporen-Komplex assoziierten Mlp1p. Dieser Faktor hat eine Funktion in der finalen Qualitätskontrolle von gespleißten mRNAs bevor diese den Zellkern verlassen können. Daraus ergibt sich folgendes Modell: Gbp2p und Hrb1p werden Spleißing-abhängig zur mRNA rekrutiert und unterstützen den Export von gespleißten mRNAs über eine Interaktion mit dem Export-Rezeptor Mex67p. Im Gegensatz dazu agiert Npl3p als universeller Export-Adapter, der unabhängig vom Intron-Status der mRNA Mex67p bindet. Bekannterweise wird Npl3p über die RNA Polymerase II frühzeitig auf alle mRNAs geladen, während Gbp2p und Hrb1p in der Elongations- phase zur mRNA gelangen. Eine stabile Assoziation von Gbp2p und Hrb1p mit der mRNA erfolgt erst durch die Assemblierung des Spleißosom, mit dessen Komponenten der Spleißing-Spätphase sie physikalisch interagieren. Diese Wechselwirkungen unterstützen Spleißing und ermöglichen über die sich anschließende Adapter-Rezeptor Interaktion einen effizienten und kontrollierten Export von gespleißten mRNAs

    Charakterisierung neuer Funktionen der mRNA-Exportfaktoren Npl3p und Dbp5p in der Translation

    No full text
    Durch die Kompartimentierung einer eukaryontischen Zelle erfolgen die Genexpression und die Proteinbiosynthese an verschiedenen Orten. Im Zellkern findet die Transkription der Gene in die komplementären prä-mRNA’s statt, die durch die nukleäre Prozessierung zu exportkompetenten mRNA’s reifen. Diese werden dann in Assoziation mit Proteinen als mRNP-Komplexe durch die Kernporenkomplexe (NPC’s) der Zellkernmembran in das Zytoplasma transportiert, wo anschließend die Translation erfolgt. Bei dieser wird der genetische Code der mRNA mit Hilfe der Ribosomen in die Aminosäuresequenz der Proteine übersetzt. An dem mRNA-Export ins Zytoplasma sind zahlreiche mRNA-bindende Proteine beteiligt, von denen ein Großteil unmittelbar nach der Translokation von der mRNA dissoziiert. Im Gegensatz dazu verbleiben einige dieser mRNA-bindenden Proteine, wie die DEAD-Box RNA-Helikase Dbp5p oder das pendelnde SR-Protein Npl3p in der Bäckerhefe Saccharomyces cerevisiae, auch während der Translation an der mRNA. Dies weist auf mögliche Funktionen dieser Proteine in der Translation hin, die in der vorliegenden Arbeit untersucht wurden. Genetische, zellbiologische und biochemische Analysen zeigen, dass Npl3p und Dbp5p in unterschiedlichen Phasen der Translation involviert sind. Im ersten Teil der Arbeit wurde durch Lokalisationsstudien und Analysen von physikalischen Interaktionen Npl3p als ein neuer Exportfaktor der ribosomalen prä-60S-Untereinheit charakterisiert. Zusätzlich bestätigen identifizierte genetische Interaktionen von NPL3 mit den bereits bekannten Exportfaktoren der prä-60S-Untereinheit, XPO1, MTR2 und NMD3, die Transportfunktion von Npl3p. Des Weiteren führt eine Deletion von NPL3 (npl3Δ) zu einer reduzierten Wachstumsrate, die nicht durch Exportdefekte der prä-60S-Untereinheit, sondern durch Translationsdefekte verursacht wird. Die Translationsdefekte werden durch eine reduzierte Monosomenanzahl (80S) hervorgerufen, die durch eine verringerte Assoziation der 40S-Untereinheit mit der 60S-Untereinheit beim finalen Schritt der Translationsinitiation, dem Subunit Joining, entstehen. Dies verdeutlichen sowohl genetische als auch physikalische Interaktionen von NPL3 bzw. Npl3p mit Faktoren, die am Prozess des Subunit Joinings beteiligt sind. Weitere Untersuchungen zeigen, dass Npl3p über seinen Carboxyterminus Homodimere oder Homooligomere ausbilden kann. Demzufolge könnte die Verknüpfung beider mRNP’s bei der Assemblierung des 80S-Ribosoms nach dem Npl3p-vermittelten Export der mRNA und der prä-60S-Untereinheit in das Zytoplasma über diese Npl3p-Npl3p-Interaktion erfolgen. Im zweiten Teil dieser Arbeit wurde eine aktive Funktion von Dbp5p bei der Translationstermination charakterisiert. Eine generelle Funktion von Dbp5p während der Translation wird durch das schlechtere Wachstum von dbp5-Mutanten in Anwesenheit von Translationsinhibitoren ersichtlich. DBP5 interagiert genetisch sowohl mit beiden Translationsterminationsfaktoren SUP45 (eRF1) und SUP35 (eRF3), als auch mit dem poly(A)-bindenden Faktor PAB1. In Reporterversuchen wird deutlich, dass die katalytische Aktivität von Dbp5p für die effiziente Erkennung des Stopp-Kodons durch Sup45p (eRF1) erforderlich ist. Des Weiteren interagiert Dbp5p physikalisch mit Sup45p (eRF1), jedoch nicht mit Sup35p (eRF3) oder Pab1p. In dbp5-Mutanten ist die Ko-Sedimentation von Sup35p (eRF3) mit Polysomen erheblich reduziert und die Assoziation von Sup45p (eRF1) mit Sup35p (eRF3) verhindert. Daher scheint Dbp5p die Rekrutierung von Sup35p in den Terminationskomplex zu kontrollieren. Weitere Experimente zeigen, dass Dbp5p die Interaktion von Sup45p und Sup35p ausschließlich bei der regulären Translationstermination, nicht jedoch im Nonsense-vermittelten mRNA-Abbau (nonsense-mediated mRNA decay, NMD) reguliert. In der vorliegenden Arbeit wurden für die beiden mRNA-Exportfaktoren Npl3p und Dbp5p neue Funktionen in der Translation identifiziert und näher charakterisiert, so dass ersichtlich wird, dass diese Proteine die beiden Prozesse, mRNA-Export und Translation, miteinander verbinden. Dies offenbart zum einen die Multifunktionalität dieser Proteine. Zum anderen zeigt die Verwendung derselben Proteine in den beiden Prozessen die effiziente Regulation in einer eukaryontischen Zelle

    Analysen des SR-Proteins Npl3 in der Translation und Charakterisierung von SR-Domänen-vermittelten Protein-Interaktionen von Npl3

    No full text
    Im Gegensatz zu vielzelligen Organismen existieren in Saccharomyces cerevisiae nur drei SR-Proteine. Diese fungieren als pendelnde Adapterproteine im nukleo-zytoplasmatischen Transport von mRNAs. Ein wichtiger Vertreter ist Npl3, welches auch mit aktiv translatierten mRNPs (messenger ribonucleoproteins) assoziiert ist. In der vorliegenden Arbeit wurde untersucht, ob Npl3 neben der Funktion des mRNA-Exports in das Zytoplasma in weiteren Prozessen eine Bedeutung hat. So konnte dazu beigetragen werden Npl3 als Prä-60S-Exportfaktor zu identifizieren. Außerdem konnte nachgewiesen werden, daß Npl3 über den Export und die zytoplasmatische Reifung hinaus mit dem Rpl10-haltigen 60S-Partikel assoziiert. Somit besitzt Npl3 das Potential über die Bindung an translationskompetente 60S-Untereinheiten die Translation zu beeinflussen. Tatsächlich konnte die vorliegende Studie eine verringerte Translationseffizienz in Hefezellen als Folge einer Verkürzung der SR-Domäne von Npl3 zeigen. Dagegen stellten sich der mRNA- und der Prä-60S-Export aus dem Zellkern sowie die zytoplasmatische Reifung des 60S-Partikels unbeeinträchtigt dar. Zusätzlich wiesen die Ergebnisse darauf hin, daß eine generelle Methylierung bzw. die Phosphorylierungsstelle an Position 411 in der SR-Domäne von Npl3 nicht essentiell für die Translation ist. Vielmehr bedingt die Verkürzung der SR-Domäne eine gestörte Bindung von Npl3 an das translationskompetente 60S-Partikel und daraus folgernd eine Störung der Monosomenformation in der Translationsinitiation. Dieser Defekt in der Monosomenbildung beruht auf einer ineffizienten Bindung von 60S-Partikeln an mRNA-rekrutierte 43S-Initiationskomplexe. Verschiedene Suppressionsexperimente und genetische Analysen in dieser Arbeit legen eine Rolle von Npl3 in Prozessen nahe, die mit den Funktionen von Rpl10 und Fun12 assoziiert sind. Des weiteren konnte eine Homomer-Bildung von Npl3-Molekülen nachgewiesen werden, welche vom N-terminalen Bereich der SR-Domäne abhängig ist. Zusätzlich demonstrierten Ko-Immunopräzipitations- und Immunfluoreszenz-Experimente, daß dieser Domänenbereich von Npl3 im Wesentlichen auch für die Bindung des Zellkernimportrezeptors Mtr10 entscheidend ist. Weitere Ergebnisse deuteten darauf hin, daß sich die Homomer-Bildung von Npl3 positiv auf die Translationsinitiation auswirkt. Demnach kann vorliegende Arbeit Npl3, und insbesondere seiner SR-Domäne, eine essentielle Aufgabe für die Translation zuweisen und lässt dabei auf eine Funktion von Npl3 im Prozess der Monosomenbildung während der Translationinitiation, wie auch im letzten zytoplasmatischen Reifeschritt des Prä-60S-Partikels schließen

    Identifizierung von neuen Faktoren des Gbp2-assoziierten mRNA-Exportes und den Untersuchungen an mRNA-bindenden Proteinen im Modellorganismus Saccharomyces cerevisiae.

    No full text
    Die räumliche und zeitliche Trennung von RNA- und Proteinsynthese in eukaryotischen Zellen bietet eine Menge Möglichkeiten für Kontrolle und Regulation dieser Vorgänge. Gleichzeitig erfordert dies eine funktionierende Maschinerie, die den korrekten Ablauf beider Prozesse und den Transport zwischen den Kompartimenten regelt. Fehler in diesen Abläufen führen unter anderen zu neurodegenerativen Krankheiten und hämatologischen und soliden Tumoren. Viele dieser Prozesse sind hochkonserviert und konnten durch Arbeiten an dem Modellmechanismus Saccharomyces cerevisiae besser verstanden werden. In dieser Arbeit werden verschiedene, mRNA-bindende und zwischen beiden Kompartimenten pendelnde Proteine in S. cerevisiae charakterisiert. Dabei wurde unter Verwendung einer zytoplasmatischen Variante des SR-ähnlichen Proteins Gbp2 (gbp2(S15A)-GFP) nach Exportfaktoren gesucht, die den Export Gbp2 assoziierter mRNAs beeinflussen. 33 durch EMS-Mutagenese erzeugte, temperatur-sensitive Mutanten wurden untersucht. Es konnten dabei das mit dem TRAMP-Komplex assoziierte Protein Mtr4 und der Spleißingfaktor Prp8 als Faktoren identifiziert werden. GBP2 ist nicht essentiell, allerdings ist eine Überexpression von GBP2 toxisch und führt zu einer nukleären Akkumulation von poly(A)+-RNA. In dieser Arbeit konnte gezeigt werden, dass diese Toxizität unabhängig von der Lokalisation in beiden Zellkompartimenten ist, da sowohl die zytoplasmatische Variante (gbp2(S13/15/17A)) als auch das vorwiegend nukleär lokalisierte Gbp2 in Überexpression toxisch sind. Gbp2 ist daher möglicherweise bei Prozessen auf beiden Seiten der Kernmembran beteiligt. In der Tat konnten anderen Arbeiten nachweisen, dass Gbp2 im Zellkern ein wichtiger Kontrollfaktor für fehlerhaft gespleißte mRNAs ist und dass dafür die Assoziation sowohl mit Spleißingfaktoren als auch mit dem TRAMP-Komplex wichtig ist. Nab2 ist ein essentielles, mRNA-bindendes, pendelndes Protein, dass mit dem mRNA-Exportfaktor Mex67 interagiert. Der in dieser Arbeit hergestellten Mutante (nab2Δ200-249) fehlt die Bindestelle für den Importrezeptor Kap104. Diese Mutante kann einen temperatursensitiven Defekt von NAB2 (nab2-21) nicht ersetzen. Des Weiteren zeigte diese Mutante im Gegensatz zu Nab2 eine vorwiegend zytoplasmatische Lokalisation, da vermutlich der Import der Mutante durch das Fehlen der Kap104-Bindestelle eingeschränkt ist. Mittels Lokalisationsstudien dieser Nab2-Variante in verschiedenen Mutationsstämmen konnte gezeigt werden, dass der Export von nab2Δ200-249, von funktionierendem mRNA Export abhängt, allerdings ist eine Ubiquitinierung durch Tom1 für den Export von nab2Δ200-249 im Gegensatz zu Nab2 keine Voraussetzung

    Messenger RNAs are recruited for nuclear export during transcription

    No full text
    Following transcription and processing, eukaryotic mRNAs are exported from the nucleus to the cytoplasm for translation. Here we present evidence that mRNAs are targeted for nuclear export cotranscriptionally. Combined mutations in the Saccharomyces cerevisiae hnRNP Npl3 and TATA-binding protein (TBP) block mRNA export, implying that cotranscriptional recruitment of Npl3 is required for efficient export of mRNA. Furthermore, Npl3 can be found in a complex with RNA Pol II, indicating that Npl3 associates with the transcription machinery. Finally, Npl3 is recruited to genes in a transcription dependent manner as determined by chromatin immunoprecipitation. Another mRNA export factor, Yra1, also associates with chromatin cotranscriptionally but appears to be recruited at a later step. Taken together, our results suggest that export factors are recruited to the sites of transcription to promote efficient mRNA export
    corecore