5 research outputs found

    Long-term follow-up of pulmonary function in Fabry disease: A bi-center observational study.

    Get PDF
    Fabry disease (FD) is a lysosomal storage disorder leading to decreased α-galactosidase A enzyme activity and subsequent abnormal accumulation of glycosphingolipids in various organs. Although histological evidence of lung involvement has been demonstrated, the functional impact of these changes is less clear. Adult patients with FD who had yearly pulmonary function tests (PFT) at two centers from 1999 thru 2015 were eligible for this observational study. Primary outcome measures were the change in forced expiratory volume in the first second (FEV1) and FEV1/FVC over time. As secondary outcome we investigated sex, smoking, enzyme replacement therapy (ERT), residual enzyme activity, and Mainz Severity Score Index as possible predictors. 95 patients (41% male, 38.2 ± 14.5 years) were included. The overall prevalence of bronchial obstruction (BO, (FEV1/FVC < 70%)) was 46%, with male sex, age and smoking as significant predictors. FEV1 decreased 29 ml per year (95% CI -36, -22 ml, p<0.0001). FEV1 decline was significantly higher in males (p = 0.009) and in patients on ERT (p = 0.004). Conclusion: Pulmonary involvement seems to be a relevant manifestation of Fabry disease, and routine PFTs should therefore be included in the multidisciplinary follow-up of these patients

    Fabry disease genotype, phenotype, and migalastat amenability: Insights from a national cohort.

    Get PDF
    Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A (α-Gal A) deficiency. The progressive accumulation of globotriaosylceramide results in life-threatening complications, including renal, cardiac, and cerebrovascular diseases. The pharmacological chaperone migalastat was recently approved as an alternative to enzyme replacement therapy in patients with amenable mutations. In this article, we investigate the proportion of amenable mutations, related to phenotype, in a population of adult patients with FD in Switzerland. This study included 170 adult patients (n = 64 males) from 46 independent pedigrees with 39 different identified mutations over the last 59 years. Overall, 68% had the classic phenotype and 48% fulfilled the current amenability criteria. Migalastat was stopped in 2/11 (18%) patients: the only male classic patient, because of lack of efficacy based on lyso-Gb3 levels, and one patient with a benign variant. In males, the achieved enzyme activities in peripheral leucocytes under migalastat treatment differed from the activities in HEK-cells after incubation with migalastat (eg, 33% in PL vs 41% HEK-cells for p.F113L; 43% in leucocytes vs 36% in HEK-cells for p.N215S, 24-30% in leucocytes vs 96% in HEK-cells for S238N). In this national cohort, we found a relatively high proportion of patients with amenable GLA mutations, which, however, had heterogeneous extent of amenability: the higher the residual α-Gal A activity, the higher the chaperone effect. Further studies are required to investigate the long-term benefits of migalastat therapy depending on the achieved enzyme activities in different amenable mutations

    Long-Term Monitoring of Cardiac Involvement under Migalastat Treatment Using Magnetic Resonance Tomography in Fabry Disease.

    No full text
    Background: Fabry cardiomyopathy is characterized by left ventricular hypertrophy, myocardial fibrosis, arrhythmia, and premature death. Treatment with migalastat, an oral pharmacological chaperone, was associated with a stabilization of cardiac biomarkers and a reduction in left ventricular mass index, as measured by echocardiography. A recent study, using cardiac magnetic resonance (CMR) as the gold standard, found a stable course of myocardial involvement after 18 months of treatment with migalastat. Our study aimed to provide long-term CMR data for the treatment with migalastat. Methods: A total of 11 females and four males with pathogenic amenable GLA mutations were treated with migalastat and underwent 1.5T CMR imaging for routine treatment effect monitoring. The main outcome was a long-term myocardial structural change, reflected by CMR. Results: After migalastat treatment initiation, left ventricular mass index, end diastolic volume, interventricular septal thickness, posterior wall thickness, estimated glomerular filtration rate, and plasma lyso-Gb3 remained stable during the median follow-up time of 34 months (min.: 25; max.: 47). The T1 relaxation times, reflecting glycosphingolipid accumulation and subsequent processes up to fibrosis, fluctuated over the time without a clear trend. No new onset of late gadolinium enhancement (LGE) areas, reflecting local fibrosis or scar formation of the myocardium, could be detected. However, patients with initially present LGE showed an increase in LGE as a percentage of left ventricular mass. The median α-galactosidase A enzymatic activity increased from 37.3% (IQR 5.88-89.3) to 105% (IQR 37.2-177) of the lower limit of the respective reference level (p = 0.005). Conclusion: Our study confirms an overall stable course of LVMi in patients with FD, treated with migalastat. However, individual patients may experience disease progression, especially those who present with fibrosis of the myocardium already at the time of therapy initiation. Thus, a regular treatment re-evaluation including CMR is needed to provide the optimal management for each patient
    corecore