69 research outputs found
Biological maturation and β-adrenergic effectors: development of β-adrenergic receptors in rabbit heart
The β-adrenergic receptor, transduction processes and catalytic activity of the adenylate cyclase enzyme complex have been investigated in rabbit heart at different stages of biological maturation. The binding of [ 3 H]-dihydroalprenolol to a washed membrane preparation isolated from rabbit ventricular muscle was used to characterize β-adrenergic receptors. Significant age-related differences were noted in β-receptor affinity (K d ) and density (RD) of neonatal and adult animals; the adult K d was 3.7-fold greater and the RD 2-fold higher than the neonates. No significant differences in these parameters were detected among the 27-day old fetus and the 1- and 7-day old neonates. Age-dependent differences in agonist isoproterenol affinity for the receptor were not observed in contrast to the significant changes in antagonist (DHA) affinity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45349/1/11010_2004_Article_BF00240617.pd
Comprehensive study of the CuF<inf>2</inf> conversion reaction mechanism in a lithium ion battery
Conversion materials for lithium ion batteries have recently attracted considerable attention due to their exceptional specific capacities. Some metal fluorides, such as CuF2, are promising candidates for cathode materials owing to their high operating potential, which stems from the high electronegativity of fluorine. However, the high ionicity of the metal–fluorine bond leads to a large band gap that renders these materials poor electronic conductors. Nanosizing the active material and embedding it within a conductive matrix such as carbon can greatly improve its electrochemical performance. In contrast to other fluorides, such as FeF2 and NiF2, good capacity retention has not, however, been achieved for CuF2. The reaction mechanisms that occur in the first and subsequent cycles and the reasons for the poor charge performance of CuF2 are studied in this paper via a variety of characterization methods. In situ pair distribution function analysis clearly shows CuF2 conversion in the first discharge. However, few structural changes are seen in the following charge and subsequent cycles. Cyclic voltammetry results, in combination with in situ X-ray absorption near edge structure and ex situ nuclear magnetic resonance spectroscopy, indicate that Cu dissolution is associated with the consumption of the LiF phase, which occurs during the first charge via the formation of a Cu1+ intermediate. The dissolution process consequently prevents Cu and LiF from transforming back to CuF2. Such side reactions result in negligible capacity in subsequent cycles and make this material challenging to use in a rechargeable battery.We acknowledge the funding from the U.S. DOE BES via
funding to the EFRC NECCES, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under Award Number
DE-SC0001294 (support for Rosa Robert and Lin-Shu Du)
and EPSRC via the “nanoionics” programme grant (support for
Xiao Hua). Use of the National Synchrotron Light Source
(NSLS), Brookhaven National Laboratory (BNL), was
supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886. Use of the Advanced Photon Source,
an Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under
Contract No. DE-AC02-06CH11357.This is the final published version of the article. It first appeared at http://pubs.acs.org/doi/abs/10.1021/jp503902z and is posted here under the terms of ACS's Editors' Choice scheme (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
Scienza del Diritto
Ridescrivere la concettualità giuridica da una prospettiva costruttivista che permetta di afferrare la storicità del diritto, le possibilità e i limiti di questa macchina complesa nella quale si condensa la modernità della società modern
Werkstoffinnovationen fuer integrierte Pyroarray-Membransysteme. Teilvorhaben: Mikrostrukturentwicklung von ferroelektrischen Duennschichtsystemen Abschlussbericht
SIGLEAvailable from TIB Hannover: F02B10 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung, Berlin (Germany)DEGerman
- …