2,638 research outputs found

    CJK-Improved 5 Flavour LO Parton Distributions in the Real Photon

    Full text link
    Radiatively generated, LO quark (u,d,s,c,b) and gluon densities in the real, unpolarized photon, improved in respect to our previous paper, are presented. We perform three global fits to the F_2^gamma data, using the LO DGLAP evolution equation. We improve the treatment of the strong coupling running and used lower values of Lambda_QCD, as we have found that the too high values adopted in the previous work caused the high chi^2 of the fits. In addition to the modified FFNS_CJKL model, referred to as FFNS_CJK 1 we analyse a FFNS_CJK 2 model in which we take into account the resolved-photon heavy-quark contribution. New CJK model with an improved high-x behavior of the F_2^gamma(x,Q^2) is proposed. Finally, in the case of the CJK model we abandon the valence sum rule imposed on the VMD input densities. New fits give chi^2 per degree of freedom about 0.25 better than the old results. All features of the CJKL model, such as the realistic heavy-quark distributions, good description of the LEP data on the Q^2 dependence of the F_2^gamma and on F_2,c^gamma are preserved. Moreover we present results of an analysis of the uncertainties of the CJK parton distributions due to the experimental errors. It is based on the Hessian method used for the proton and very recently applied for the photon by one of us. Parton and structure function parametrizations of the best fits in both FFNS_CJK and CJK approaches are made accessible. For the CJK model we provide also sets of test parametrizations which allow for calculation of uncertainties of any physical value depending on the real photon parton densities.Comment: 27 pages, 14 figures, FORTRAN programs available at http://www.fuw.edu.pl/~pjank/param.htm

    Two-Higgs-Doublet Models with CP violation

    Get PDF
    We consider the Two-Higgs-Doublet Model and determine the range of parameters for which CP violation and Flavor Changing Neutral Current effects are naturally small. It corresponds to small values of the mass parameter m_{12}^2, describing soft (\phi_1,\phi_2) mixing in the potential. We discuss how, in this approach, some Higgs bosons can be heavy, with mass of the order of 1 TeV. The possibility that at the Tevatron, LHC and an e^+e^- Linear Collider, only one Higgs boson will be found, with properties indistinguishable from those in the Standard Model (SM), we define as the SM-like scenario. While this scenario can be obtained with large \mu^2 \sim \Re m_{12}^2 parameter, in which case there is decoupling, we here discuss the opposite case of small \mu^2, without decoupling.Comment: 5 pages, LaTeX, including figures. Presented at SUSY02, DESY, June 2002 and LCWS02, Jeju, Korea, August 2002. To appear in the proceedings. Version 2: minor changes, additional reference
    • …
    corecore