2,076 research outputs found

    Minimalist design of a robust real-time quantum random number generator

    Full text link
    We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic randomness extractor, which is realized as a look-up table. This enables high speed on-the-fly processing without the need of extensive computations. The overall performance of the device is around 1 random bit per detector click, resulting in 1.2 Mbit/s generation rate in our implementation

    Generic scaling relation in the scalar Ï•4\phi^{4} model

    Full text link
    The results of analysis of the one--loop spectrum of anomalous dimensions of composite operators in the scalar Ï•4 \phi^{4} model are presented. We give the rigorous constructive proof of the hypothesis on the hierarchical structure of the spectrum of anomalous dimensions -- the naive sum of any two anomalous dimensions generates a limit point in the spectrum. Arguments in favor of the nonperturbative character of this result and the possible ways of a generalization to other field theories are briefly discussed.Comment: 15 pages, Latex, 50 K

    First Starbursts at high redshift: Formation of globular clusters

    Full text link
    Numerical simulations of a Milky Way-size galaxy demonstrate that globular clusters with the properties similar to observed can form naturally at z > 3 in the concordance Lambda-CDM cosmology. The clusters in our model form in the strongly baryon-dominated cores of supergiant molecular clouds. The first clusters form at z = 12, while the peak formation appears to be at z = 3-5. The zero-age mass function of globular clusters can be approximated by a power-law dN/dM ~ M^-2, in agreement with observations of young massive star clusters.Comment: 4 pages, proceedings of the "Multi-Wavelength Cosmology" meeting, June 200

    Spin and orbital Hall effects for diffracting optical beams in gradient-index media

    Full text link
    We examine the evolution of paraxial beams carrying intrinsic spin and orbital angular momenta (AM) in gradient-index media. A parabolic-type equation is derived which describes the beam diffraction in curvilinear coordinates accompanying the central ray. The center of gravity of the beam experiences transverse AM-dependent deflections -- the spin and orbital Hall effects. The spin Hall effect generates a transverse translation of the beam as a whole, in precise agreement with recent geometrical optics predictions. At the same time, the orbital Hall effect is significantly affected by the diffraction in the inhomogeneous medium and is accompanied by changes in the intrinsic orbital AM and deformations of the beam.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Survival probability in Generalized Rosenzweig-Porter random matrix ensemble

    Full text link
    We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability R(t)R(t), the probability of finding the initial state after time tt. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that R(t)R(t) can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of R(t)R(t) with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of R(t→∞)=kR(t\to\infty)=k, finite in the thermodynamic limit N→∞N\rightarrow\infty, which approaches k=R(t→0)k=R(t\to 0) in this limit.Comment: 21 pages, 12 figures, 61 reference
    • …
    corecore