10,498 research outputs found

    Multi-wavelength observations of the gamma-ray flaring quasar S4 1030+61 in 2009-2014

    Full text link
    We present a study of the parsec-scale multi-frequency properties of the quasar S4 1030+61 during a prolonged radio and gamma-ray activity. Observations were performed within Fermi gamma-ray telescope, OVRO 40-m telescope and MOJAVE VLBA monitoring programs, covering five years from 2009. The data are supplemented by four-epoch VLBA observations at 5, 8, 15, 24, and 43 GHz, which were triggered by the bright gamma-ray flare, registered in the quasar in 2010. The S4 1030+61 jet exhibits an apparent superluminal velocity of (6.4+-0.4)c and does not show ejections of new components in the observed period, while decomposition of the radio light curve reveals nine prominent flares. The measured variability parameters of the source show values typical for Fermi-detected quasars. Combined analysis of radio and gamma-ray emission implies a spatial separation between emitting regions at these bands of about 12 pc and locates the gamma-ray emission within a parsec from the central engine. We detected changes in the value and direction of the linear polarization and the Faraday rotation measure. The value of the intrinsic brightness temperature of the core is above the equipartition state, while its value as a function of distance from the core is well approximated by the power-law. Altogether these results show that the radio flaring activity of the quasar is accompanied by injection of relativistic particles and energy losses at the jet base, while S4 1030+61 has a stable, straight jet well described by standard conical jet theories.Comment: accepted by MNRAS, 16 pages, 14 figures, 8 tables, 5 pages of supplementary materia

    Comment on "Interaction Effects in Conductivity of Si Inversion Layers at Intermediate Temperatures"

    Full text link
    We show that the comparison between theory and experiment, performed by Pudalov et al. in PRL 91, 126403 (2003), is not valid.Comment: comment on PRL 91, 126403 (2003) by Pudalov et a

    Spin Degree of Freedom in a Two-Dimensional Electron Liquid

    Full text link
    We have investigated correlation between spin polarization and magnetotransport in a high mobility silicon inversion layer which shows the metal-insulator transition. Increase in the resistivity in a parallel magnetic field reaches saturation at the critical field for the full polarization evaluated from an analysis of low-field Shubnikov-de Haas oscillations. By rotating the sample at various total strength of the magnetic field, we found that the normal component of the magnetic field at minima in the diagonal resistivity increases linearly with the concentration of ``spin-up'' electrons.Comment: 4 pages, RevTeX, 6 eps-figures, to appear in PR

    Magnetoresistance of a two-dimensional electron gas in a parallel magnetic field

    Full text link
    The conductivity of a two-dimensional electron gas in a parallel magnetic field is calculated. We take into account the magnetic field induced spin-splitting, which changes the density of states, the Fermi momentum and the screening behavior of the electron gas. For impurity scattering we predict a positive magnetoresistance for low electron density and a negative magnetoresistance for high electron density. The theory is in qualitative agreement with recent experimental results found for Si inversion layers and Si quantum wells.Comment: 4 pages, figures included, PDF onl

    Magnetic Field Suppression of the Conducting Phase in Two Dimensions

    Full text link
    The anomalous conducting phase that has been shown to exist in zero field in dilute two-dimensional electron systems in silicon MOSFETs is driven into a strongly insulating state by a magnetic field of about 20 kOe applied parallel to the plane. The data suggest that in the limit of T -> 0 the conducting phase is suppressed by an arbitrarily weak magnetic field. We call attention to striking similarities to magnetic field-induced superconductor-insulator transitions

    A New Liquid Phase and Metal-Insulator Transition in Si MOSFETs

    Full text link
    We argue that there is a new liquid phase in the two-dimensional electron system in Si MOSFETs at low enough electron densities. The recently observed metal-insulator transition results as a crossover from the percolation transition of the liquid phase through the disorder landscape in the system below the liquid-gas critical temperature. The consequences of our theory are discussed for variety of physical properties relevant to the recent experiments.Comment: 12 pages of RevTeX with 3 postscript figure

    Superconductivity in correlated disordered two-dimensional electron gas

    Full text link
    We calculate the dynamic effective electron-electron interaction potential for a low density disordered two-dimensional electron gas. The disordered response function is used to calculate the effective potential where the scattering rate is taken from typical mobilities from recent experiments. We investigate the development of an effective attractive pair potential for both disordered and disorder free systems with correlations determined from existing numerical simulation data. The effect of disorder and correlations on the superconducting critical temperature Tc is discussed.Comment: 4 pages, RevTeX + epsf, 4 figure

    Hall Coefficient of a Dilute 2D Electron System in Parallel Magnetic Field

    Full text link
    Measurements in magnetic fields applied at a small angle with respect to the 2D plane of the electrons of a low-density silicon MOSFET indicate that the Hall coefficient is independent of parallel field from H=0 to H>HsatH>H_{sat}, the field above which the longitudinal resistance saturates and the electrons have reached full spin-polarization. This implies that the mobilities of the spin-up and spin-down electrons remain comparable at all magnetic fields, and suggests there is strong mixing of spin-up and spin-down electron states.Comment: 4 pages, 2 figure
    • …
    corecore