79 research outputs found

    Toxic alcohols

    Get PDF

    Consequences and therapy of the metabolic acidosis of chronic kidney disease

    Get PDF
    Metabolic acidosis is common in patients with chronic kidney disease (CKD), particularly once the glomerular filtration rate (GFR) falls below 25 ml/min/1.73 m2. It is usually mild to moderate in magnitude with the serum bicarbonate concentration ([HCO3−]) ranging from 12 to 23 mEq/l. Even so, it can have substantial adverse effects, including development or exacerbation of bone disease, growth retardation in children, increased muscle degradation with muscle wasting, reduced albumin synthesis with a predisposition to hypoalbuminemia, resistance to the effects of insulin with impaired glucose tolerance, acceleration of the progression of CKD, stimulation of inflammation, and augmentation of β2-microglobulin production. Also, its presence is associated with increased mortality. The administration of base to patients prior to or after initiation of dialysis leads to improvement in many of these adverse effects. The present recommendation by the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF KDOQI) is to raise serum [HCO3−] to ≥22 mEq/l, whereas Caring for Australians with Renal Impairment (CARI) recommends raising serum [HCO3−] to >22 mEq/l. Base administration can potentially contribute to volume overload and exacerbation of hypertension as well as to metastatic calcium precipitation in tissues. However, sodium retention is less when given as sodium bicarbonate and sodium chloride intake is concomitantly restricted. Results from various studies suggest that enhanced metastatic calcification is unlikely with the pH values achieved during conservative base administration, but the clinician should be careful not to raise serum [HCO3−] to values outside the normal range

    White matter changes and confrontation naming in retired aging national football league athletes

    Get PDF
    Using diffusion tensor imaging (DTI), we assessed the relationship of white matter integrity and performance on the Boston Naming Test (BNT) in a group of retired professional football players and a control group. We examined correlations between fractional anisotropy (FA) and mean diffusivity (MD) with BNT T-scores in an unbiased voxelwise analysis processed with tract-based spatial statistics (TBSS). We also analyzed the DTI data by grouping voxels together as white matter tracts and testing each tract's association with BNT T-scores. Significant voxelwise correlations between FA and BNT performance were only seen in the retired football players (p < 0.02). Two tracts had mean FA values that significantly correlated with BNT performance: forceps minor and forceps major. White matter integrity is important for distributed cognitive processes, and disruption correlates with diminished performance in athletes exposed to concussive and subconcussive brain injuries, but not in controls without such exposure

    Abnormal Placental Development and Early Embryonic Lethality in EpCAM-Null Mice

    Get PDF
    BACKGROUND: EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs

    Using Shifts in Amino Acid Frequency and Substitution Rate to Identify Latent Structural Characters in Base-Excision Repair Enzymes

    Get PDF
    Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution

    Lactic acidosis.

    No full text
    Copyright © 2014 Massachusetts Medical Society. Lactic acidosis results from the accumulation of lactate and protons in the body fluids and is often associated with poor clinical outcomes. The effect of lactic acidosis is governed by its severity and the clinical context. Mortality is increased by a factor of nearly three when lactic acidosis accompanies low-flow states or sepsis,1 and the higher the lactate level, the worse the outcome.2 Although hyperlactatemia is often attributed to tissue hypoxia, it can result from other mechanisms. Control of the triggering conditions is the only effective means of treatment. However, advances in understanding its pathophysiological features and the factors causing cellular dysfunction in the condition could lead to new therapies. This overview of lactic acidosis emphasizes its pathophysiological aspects, as well as diagnosis and management. We confine our discussion to disorders associated with accumulation of the l optical isomer of lactate, which represent the vast majority of cases of lactic acidosis encountered clinically

    The Role of the Endocrine System in the Regulation of Acid–Base Balance by the Kidney and the Progression of Chronic Kidney Disease

    No full text
    Systemic acid–base status is primarily determined by the interplay of net acid production (NEAP) arising from metabolism of ingested food stuffs, buffering of NEAP in tissues, generation of bicarbonate by the kidney, and capture of any bicarbonate filtered by the kidney. In chronic kidney disease (CKD), acid retention may occur when dietary acid production is not balanced by bicarbonate generation by the diseased kidney. Hormones including aldosterone, angiotensin II, endothelin, PTH, glucocorticoids, insulin, thyroid hormone, and growth hormone can affect acid–base balance in different ways. The levels of some hormones such as aldosterone, angiotensin II and endothelin are increased with acid accumulation and contribute to an adaptive increase in renal acid excretion and bicarbonate generation. However, the persistent elevated levels of these hormones can damage the kidney and accelerate progression of CKD. Measures to slow the progression of CKD have included administration of medications which inhibit the production or action of deleterious hormones. However, since metabolic acidosis accompanying CKD stimulates the secretion of several of these hormones, treatment of CKD should also include administration of base to correct the metabolic acidosis

    Toxic Alcohol Ingestions: Clinical Features, Diagnosis, and Management

    No full text
    • …
    corecore