105 research outputs found

    Production, Collection and Utilization of Very Long-Lived Heavy Charged Leptons

    Full text link
    If a fourth generation of leptons exists, both the neutrino and its charged partner must be heavier than 45 GeV. We suppose that the neutrino is the heavier of the two, and that a global or discrete symmetry prohibits intergenerational mixing. In that case, non-renormalizable Planck scale interactions will induce a very small mixing; dimension five interactions will lead to a lifetime for the heavy charged lepton of O(1100)O(1-100) years. Production of such particles is discussed, and it is shown that a few thousands can be produced and collected at a linear collider. The possible uses of these heavy leptons is also briefly discussed.Comment: 9 pages Late

    On the energy-momentum tensor for a scalar field on manifolds with boundaries

    Full text link
    We argue that already at classical level the energy-momentum tensor for a scalar field on manifolds with boundaries in addition to the bulk part contains a contribution located on the boundary. Using the standard variational procedure for the action with the boundary term, the expression for the surface energy-momentum tensor is derived for arbitrary bulk and boundary geometries. Integral conservation laws are investigated. The corresponding conserved charges are constructed and their relation to the proper densities is discussed. Further we study the vacuum expectation value of the energy-momentum tensor in the corresponding quantum field theory. It is shown that the surface term in the energy-momentum tensor is essential to obtain the equality between the vacuum energy, evaluated as the sum of the zero-point energies for each normal mode of frequency, and the energy derived by the integration of the corresponding vacuum energy density. As an application, by using the zeta function technique, we evaluate the surface energy for a quantum scalar field confined inside a spherical shell.Comment: 25 pages, 2 figures, section and appendix on the surface energy for a spherical shell are added, references added, accepted for publication in Phys. Rev.

    The cosmic ray positron excess and neutralino dark matter

    Get PDF
    Using a new instrument, the HEAT collaboration has confirmed the excess of cosmic ray positrons that they first detected in 1994. We explore the possibility that this excess is due to the annihilation of neutralino dark matter in the galactic halo. We confirm that neutralino annihilation can produce enough positrons to make up the measured excess only if there is an additional enhancement to the signal. We quantify the `boost factor' that is required in the signal for various models in the Minimal Supersymmetric Standard Model parameter space, and study the dependence on various parameters. We find models with a boost factor greater than 30. Such an enhancement in the signal could arise if we live in a clumpy halo. We discuss what part of supersymmetric parameter space is favored (in that it gives the largest positron signal), and the consequences for other direct and indirect searches of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the 2σ\sim2\sigma level.Comment: Replaced to match the published version, references update

    De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter

    Full text link
    When de Sitter first introduced his celebrated spacetime, he claimed, following Schwarzschild, that its spatial sections have the topology of the real projective space RP^3 (that is, the topology of the group manifold SO(3)) rather than, as is almost universally assumed today, that of the sphere S^3. (In modern language, Schwarzschild was disturbed by the non-local correlations enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not have been accepted as such by de Sitter. There is no real basis within classical cosmology for preferring S^3 to RP^3, but the general feeling appears to be that the distinction is in any case of little importance. We wish to argue that, in the light of current concerns about the nature of de Sitter space, this is a mistake. In particular, we argue that the difference between "dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of understanding horizon entropies. In the approach to de Sitter entropy via Schwarzschild-de Sitter spacetime, we find that the apparently trivial difference between RP^3 and S^3 actually leads to very different perspectives on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers finally fixed, JHEP versio

    Cosmic acceleration from second order gauge gravity

    Full text link
    We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at 9.3  Gyr\sim9.3\;Gyr).Comment: RevTex4 15 pages, 1 figure. Accepted for publication in Astrophysics & Space Scienc

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    Cosmology at the Millennium

    Get PDF
    One hundred years ago we did not know how stars generate energy, the age of the Universe was thought to be only millions of years, and our Milky Way galaxy was the only galaxy known. Today, we know that we live in an evolving and expanding Universe comprising billions of galaxies, all held together by dark matter. With the hot big-bang model, we can trace the evolution of the Universe from the hot soup of quarks and leptons that existed a fraction of a second after the beginning to the formation of galaxies a few billion years later, and finally to the Universe we see today 13 billion years after the big bang, with its clusters of galaxies, superclusters, voids, and great walls. The attractive force of gravity acting on tiny primeval inhomogeneities in the distribution of matter gave rise to all the structure seen today. A paradigm based upon deep connections between cosmology and elementary particle physics -- inflation + cold dark matter -- holds the promise of extending our understanding to an even more fundamental level and much earlier times, as well as shedding light on the unification of the forces and particles of nature. As we enter the 21st century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial Volume of Reviews of Modern Physic

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Indirect Neutralino Detection Rates in Neutrino Telescopes

    Get PDF
    Neutralinos annihilating in the center of the Sun or the Earth may give rise to a detectable signal of neutrinos. We derive the indirect detection rates for neutrino telescopes in the minimal supersymmetric extension of the standard model. We show that even after imposing all phenomenological and experimental constraints that make the theories viable, regions of parameter space exist which can already be probed by existing neutrino telescopes. We compare with the discovery potential of supersymmetry at LEP2 as well as direct detections and point out the complementarity of the methods.Comment: LaTeX, 18 pages with 9 eps-figure
    corecore