37 research outputs found

    Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation

    Get PDF
    Lawsonia intracellularis is an obligate intracellular bacterial pathogen that causes proliferative enteropathy (PE) in pigs. L. intracellularis infection causes extensive intestinal crypt cell proliferation and inhibits secretory and absorptive cell differentiation. However, the affected host upstream cellular pathways leading to PE are still unknown. β-catenin/Wnt signalling is essential in maintaining intestinal stem cell (ISC) proliferation and self-renewal capacity, while Notch signalling governs differentiation of secretory and absorptive lineage specification. Therefore, in this report we used immunofluorescence (IF) and quantitative reverse transcriptase PCR (RTqPCR) to examine β-catenin/Wnt and Notch-1 signalling levels in uninfected and L. intracellularis infected pig ileums at 3, 7, 14, 21 and 28 days post challenge (dpc). We found that while the significant increase in Ki67+ nuclei in crypts at the peak of L. intracellularis infection suggested enhanced cell proliferation, the expression of c-MYC and ASCL2, promoters of cell growth and ISC proliferation respectively, was down-regulated. Peak infection also coincided with enhanced cytosolic and membrane-associated β-catenin staining and induction of AXIN2 and SOX9 transcripts, both encoding negative regulators of β-catenin/Wnt signalling and suggesting a potential alteration to β-catenin/Wnt signalling levels, with differential regulation of the expression of its target genes. We found that induction of HES1 and OLFM4 and the down-regulation of ATOH1 transcript levels was consistent with the increased Notch-1 signalling in crypts at the peak of infection. Interestingly, the significant down-regulation of ATOH1 transcript levels coincided with the depletion of MUC2 expression at 14 dpc, consistent with the role of ATOH1 in promoting goblet cell maturation. The lack of significant change to LGR5 transcript levels at the peak of infection suggested that the crypt hyperplasia was not due to the expansion of ISC population. Overall, simultaneous induction of Notch-1 signalling and the attenuation of β-catenin/Wnt pathway appear to be associated with the inhibition of goblet cell maturation and enhanced crypt cell proliferation at the peak of L. intracellularis infection. Moreover, the apparent differential regulation of apoptosis between crypt and lumen cells together with the strong induction of Notch-1 signalling and the enhanced SOX9 expression along crypts 14 dpc suggest an expansion of actively dividing transit amplifying and/or absorptive progenitor cells and provide a potential basis for understanding the development and maintenance of PE

    Charakterystyka popiołu dennego z MSWI oraz ocena odzysku

    No full text
    Municipal solid waste incineration (MSWI) bottom ash contains valuable components that can be recovered as secondary materials, such as ferrous and non-ferrous metals, some rare earth elements, glass etc. Metal-free mineral fraction can be used in construction industry as a substitute for natural materials. Important benefit of bottom ash recycling for the plant operator is also in reduction of fees for solid residuals landfilling. The composition of bottom ash is highly dependent on the composition of incinerated waste but in average can be around 5–13% ferrous metals, 2–5% non-ferrous metals, 15–30% glass and ceramics, 1–5% unburned organics and 50–70% mineral fraction. Several incineration plants in Europe are equipped with advanced systems for metals recovery, mostly based on magnetic separation of ferrous metals and separation of non-ferrous metals usually by eddy-current separators. To assess the possibilities of the bottom ash treatment in the Czech Republic it is necessary to obtain data about the bottom ash composition and evaluate its resource recovery potential. This paper summarizes characteristics of bottom ash samples from waste-to-energy plant in Prague. Emphasis of the study was primarily placed on the material composition. Bottom ash samples were dried and sieved into eight size fractions in the first step. It must be said that particle size distribution plays a decisive role for further utilization of bottom ash. In the second step, individual size fractions were sorted, using magnetic separation and the set of grinding, sieving, and manual separation processes, into the following materials: glass, ceramics and porcelain, magnetic particles with ferrous scrap, non-ferrous metals, unburned organic material, and residual fraction.Miejskie spalarnie odpadów stałych (ang. skrót MSWI) wytwarzają popiół, który zawiera cenne składniki, które można odzyskać w postaci materiałów wtórnych, tj. metali żelaznych i nieżelaznych, niektórych metali ziem rzadkich, szkła itd. Pozbawiona metalu frakcja mineralna może być użyta w przemyśle budowlanym jako zamiennik dla materiałów naturalnych. Ważną korzyścią płynącą z recyklingu popiołu dennego dla zarządzających spalarnią jest obniżenie kosztów składowania stałych pozostałości pospalaniu. Skład popiołu dennego w dużej mierze zależy od składu odpadów i średnio zawiera około 5-13% metali żelaznych, 2-5% metali nieżelaznych, 15-30% szkła i ceramiki, 1–5% niespalonych składników organicznych i 50-70% frakcji mineralnej. Kilka spalarni w Europie jest wyposażonych w zaawansowane systemy odzysku metali, głównie oparte o separacje magnetyczną. Aby ocenić możliwości odzysku popiołu dennego w Republice Czeskiej, zebrano dane na temat składu popiołu dennego i określono potencjał odzysku. Niniejsza praca podsumowuje charakterystykę próbek popiołu dennego pobranych ze spalarni generującej energię z odpadów znajdującej się w Pradze. Nacisk był przede wszystkim położony na skład materiału. W pierwszym etapie próbki popiołu dennego zostały osuszone i przesiane na 8 różnych frakcji. Warto uwzględnić, że rozkład wielkości ziaren ma decydujący wpływ na dalszą utylizację popiołu dennego. W drugim kroku, poszczególne frakcje zostały poddane separacji magnetycznej oraz innym procesom tj. rozdrabnianie, przesiewanie oraz separacja ręczna, na poszczególne frakcje: szkło, ceramika i porcelana, cząsteczki magnetyczne ze skrawkami żelaza, metale nieżelazne, niespalone materiały organiczne i pozostałe frakcje
    corecore