31,533 research outputs found

    Radio Observations of the Magnetic Fields in Galaxies

    Full text link
    After a short introduction on how we get information of the magnetic fields from radio observations I discuss the results concerning the magnetic field structure in galaxies: Large-scale regular magnetic field pattern of spiral structure exist in grand-design spirals, flocculent and even irregular galaxies. The regular field in spirals is aligned along the optical spiral arms but strongest in the interarm region, sometimes forming 'magnetic arms'. The strongest total field is found in the optical arms, but mainly irregular. The large-scale regular field is best explained by some kind of dynamo action. Only a few galaxies show a dominant axisymmetric field pattern, most field structures seem to be a superposition of different dynamo modes or rather reveal more local effects related to density waves, bars or shocks. Observations of edge-on galaxies show that the magnetic fields are mainly parallel to the disk except in some galaxies with strong star formation and strong galactic winds as e.g. NGC 4631.Comment: 9 pages with 4 figures. To be published in Acta Astronomica Sinica Vol. 44, 2003 (Conf. Proc. "Radio Studies of Galactic Objects, Galaxies and AGNs", eds. J.L. Han et al.). Final published version also available at http://www.bao.ac.cn/bao/hjl/xian/proceedings

    ewN2HDECAY - A program for the Calculation of Electroweak One-Loop Corrections to Higgs Decays in the Next-to-Minimal Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections

    Full text link
    We present in this paper our new program package ewN2HDECAY for the calculation of the partial decay widths and branching ratios of the Higgs bosons of the Next-to-Minimal 2-Higgs Doublet Model (N2HDM). The N2HDM is based on a general CP-conserving 2HDM which is extended by a real scalar singlet field. The program computes the complete electroweak one-loop corrections to all non-loop-induced two-body on-shell Higgs boson decays in the N2HDM and combines them with the state-of-the-art QCD corrections that are already implemented in the existing program N2HDECAY. Most of the independent input parameters of the electroweak sector of the N2HDM are renormalized in an on-shell scheme. The soft-Z2\mathbb{Z}_2-breaking squared mass scale m122m_{12}^2 and the vacuum expectation value vSv_S of the SU(2)LSU(2)_L singlet field, however, are renormalized with MS\overline{\text{MS}} conditions, while for the four scalar mixing angles αi\alpha _i (i=1,2,3i=1,2,3) and β\beta of the N2HDM, several different renormalization schemes are applied. By giving out the leading-order and the loop-corrected partial decay widths separately from the branching ratios, the program ewN2HDECAY not only allows for phenomenological analyses of the N2HDM at highest precision, it can also be used for a study of the impact of the electroweak corrections and the remaining theoretical uncertainty due to missing higher-order corrections based on a change of the renormalization scheme. The input parameters are then consistently calculated with a parameter conversion routine when switching from one renormalization scheme to the other. The latest version of the program ewN2HDECAY can be downloaded from the URL \href{https://github.com/marcel-krause/ewN2HDECAY}{https://github.com/marcel-krause/ewN2HDECAY}

    Impact of Electroweak Corrections on Neutral Higgs Boson Decays in Extended Higgs Sectors

    Get PDF
    Precision predictions play an important role in the search for indirect New Physics effects in the Higgs sector itself. For the electroweak (EW) corrections of the Higgs bosons in extended Higgs sectors several renormalization schemes have been worked out that provide gauge-parameter-independent relations between the input parameters and the computed observables. Our recently published program codes 2HDECAY and ewN2HDECAY allow for the computation of the EW corrections to the Higgs decay widths and branching ratios of the Two-Higgs-Doublet Model (2HDM) and the Next-to-Minimal-2HDM (N2HDM) for different renormalization schemes of the scalar mixing angles. In this paper, we present a comprehensive and complete overview over the relative size of the EW corrections to the branching ratios of the 2HDM and N2HDM neutral Higgs bosons for different applied renormalization schemes. We quantify the size of the EW corrections of Standard Model(SM)- and non-SM-like Higgs bosons and moreover also identify renormalization schemes that are well-behaved and do not induce unnaturally large corrections. We furthermore pin down decays and parameter regions that feature large EW corrections and need further treatment in order to improve the predictions. Our study sets the scene for future work in the computation of higher-order corrections to the decays of non-minimal Higgs sectors

    Very cold and massive cores near ISOSS J18364-0221: Implications for the initial conditions of high-mass star-formation

    Full text link
    We report the discovery of two very cold and massive molecular cloud cores in the region ISOSS J18364-0221. The object has been identified by a systematic search for very early evolutionary stages of high-mass stars using the 170 micron ISOPHOT Serendipity Survey (ISOSS). Submm continuum and molecular line measurements reveal two compact cores within this region. The first core has a temperature of 16.5 K, shows signs of ongoing infall and outflows, has no NIR or MIR counterpart and is massive enough (M ~ 75 M_sun) to form at least one O star with an associated cluster. It is therefore considered a candidate for a genuine high-mass protostar and a high-mass analog to the Class 0 objects. The second core has an average gas and dust temperature of only ~ 12 K and a mass of M ~ 280 M_sun. Its temperature and level of turbulence are below the values found for massive cores so far and are suggested to represent the initial conditions from which high-mass star formation occurs.Comment: 9 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Regularities and Irregularities in Order Flow Data

    Full text link
    We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the orderbook. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the orderbook structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.Comment: 10 pages, 9 figure
    corecore