6,799 research outputs found

    Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model

    Full text link
    One-dimensional quasiperiodic systems, such as the Harper model and the Fibonacci quasicrystal, have long been the focus of extensive theoretical and experimental research. Recently, the Harper model was found to be topologically nontrivial. Here, we derive a general model that embodies a continuous deformation between these seemingly unrelated models. We show that this deformation does not close any bulk gaps, and thus prove that these models are in fact topologically equivalent. Remarkably, they are equivalent regardless of whether the quasiperiodicity appears as an on-site or hopping modulation. This proves that these different models share the same boundary phenomena and explains past measurements. We generalize this equivalence to any Fibonacci-like quasicrystal, i.e., a cut and project in any irrational angle.Comment: 7 pages, 2 figures, minor change

    Softly broken supersymmetric Yang-Mills theories: Renormalization and non-renormalization theorems

    Get PDF
    We present a minimal version for the renormalization of softly broken Super-Yang-Mills theories using the extended model with a local gauge coupling. It is shown that the non-renormalization theorems of the case with unbroken supersymmetry are valid without modifications and that the renormalization of soft-breaking parameters is completely governed by the renormalization of the supersymmetric parameters. The symmetry identities in the present context are peculiar, since the extended model contains two anomalies: the Adler-Bardeen anomaly of the axial current and an anomaly of supersymmetry in the presence of the local gauge coupling. From the anomalous symmetries we derive the exact all-order expressions for the beta functions of the gauge coupling and of the soft-breaking parameters. They generalize earlier results to arbitrary normalization conditions and imply the NSVZ expressions for a specific normalization condition on the coupling.Comment: 24 pages, LaTeX, v2: one reference adde

    On Critical Massive (Super)Gravity in adS3

    Get PDF
    We review the status of three-dimensional "general massive gravity" (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of "chiral gravity". We then show how these results extend to N=1 super-GMG, expanded about a supersymmetric adS vacuum, and also to the most general `curvature-squared' N=1 supergravity model.Comment: 10 pages, Proceedings of ERE 2010, Granada, 6-10 september 2010; reference adde

    Physical renormalization condition for the quark-mixing matrix

    Full text link
    We investigate the renormalization of the quark-mixing matrix in the Electroweak Standard Model. We show that the corresponding counterterms must be gauge independent as a consequence of extended BRS invariance. Using rigid SU(2)_L symmetry, we proof that the ultraviolet-divergent parts of the invariant counterterms are related to the field renormalization constants of the quark fields. We point out that for a general class of renormalization schemes rigid SU(2)_L symmetry cannot be preserved in its classical form, but is renormalized by finite counterterms. Finally, we discuss a genuine physical renormalization condition for the quark-mixing matrix that is gauge independent and does not destroy the symmetry between quark generations.Comment: 20 pages, LaTeX, minor changes, references adde

    Large Charge Four-Dimensional Extremal N=2 Black Holes with R^2-Terms

    Full text link
    We consider N=2 supergravity in four dimensions with small R^2 curvature corrections. We construct large charge extremal supersymmetric and non-supersymmetric black hole solutions in all space, and analyze their thermodynamic properties.Comment: 18 pages. v2,3: minor fixe

    Pauli's Theorem and Quantum Canonical Pairs: The Consistency Of a Bounded, Self-Adjoint Time Operator Canonically Conjugate to a Hamiltonian with Non-empty Point Spectrum

    Full text link
    In single Hilbert space, Pauli's well-known theorem implies that the existence of a self-adjoint time operator canonically conjugate to a given Hamiltonian signifies that the time operator and the Hamiltonian possess completely continuous spectra spanning the entire real line. Thus the conclusion that there exists no self-adjoint time operator conjugate to a semibounded or discrete Hamiltonian despite some well-known illustrative counterexamples. In this paper we evaluate Pauli's theorem against the single Hilbert space formulation of quantum mechanics, and consequently show the consistency of assuming a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with an unbounded, or semibounded, or finite point spectrum. We point out Pauli's implicit assumptions and show that they are not consistent in a single Hilbert space. We demonstrate our analysis by giving two explicit examples. Moreover, we clarify issues sorrounding the different solutions to the canonical commutation relations, and, consequently, expand the class of acceptable canonical pairs beyond the solutions required by Pauli's theorem.Comment: contains corrections to minor typographical errors of the published versio

    Boojums in Rotating Two-Component Bose-Einstein Condensates

    Full text link
    A boojum is a topological defect that can form only on the surface of an ordered medium such as superfluid 3^3He and liquid crystals. We study theoretically boojums appearing between two phases with different vortex structures in two-component BECs where the intracomponent interaction is repulsive in one phase and attractive in the other. The detailed structure of the boojums is revealed by investigating its density distribution, effective superflow vorticity and pseudospin texture.Comment: 4 pages, 4 figure

    Adolescents' life plans in the city of Madrid. Are immigrant origins of any importance?

    Get PDF
    Identities formed during adolescence are known to be crucial in shaping future life decisions in multiple domains, including not only the educational and work careers but also partnership arrangements, fertility trajectories, residential choices, even civic and political attitudes. In this article we examine in a very simple and mostly descriptive way the main differences and similarities between the daily life of adolescents of immigrant and non-immigrant origin, and their wishes and expectations for their future, utilizing data from the Chances Survey, collected in 30 secondary schools in the city of Madrid in 2011. Our methods combine a comparison of means, the ANOVA test, multivariate regressions and factor analysis, in order to identify when adolescents of immigrant origin reveal wishes and expectations significantly different from those of their classmates of native origin; and the extent to which they expect higher frustration of their wishes in their future life, or not. Differences by gender are also explored. Our findings suggest similarities and differences between both groups depending on the particular aspect examined, and discard a systematic pattern of greater optimism or pessimism among immigrant adolescents compared to their non-immigrant classmates. Differences by origin tend to be larger when respondents are asked about the immediate future instead of the more distant one, and immigrant girls seem to be the most pessimistic about their future.

    5D Attractors with Higher Derivatives

    Full text link
    We analyze higher derivative corrections to attractor geometries in five dimensions. We find corrected AdS_3xS^2 geometries by solving the equations of motion coming from a recently constructed four-derivative supergravity action in five dimensions. The result allows us to explicitly verify a previous anomaly based derivation of the AdS_3 central charges of this theory. Also, by dimensional reduction we compare our results with those of the 4D higher derivative attractor, and find complete agreement.Comment: 18 pages, harvma
    • …
    corecore