13,200 research outputs found

    Particle production in p-p collisions at sqrt(s) = 17 GeV within the statistical model

    Full text link
    A thermal-model analysis of particle production of p-p collisions at sqrt(s) = 17 GeV using the latest available data is presented. The sensitivity of model parameters on data selections and model assumptions is studied. The system-size dependence of thermal parameters and recent differences in the statistical model analysis of p-p collisions at the super proton synchrotron (SPS) are discussed. It is shown that the temperature and strangeness undersaturation factor depend strongly on kaon yields which at present are still not well known experimentally. It is conclude, that within the presently available data at the SPS it is rather unlikely that the temperature in p-p collisions exceeds significantly that expected in central collisions of heavy ions at the same energy.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC

    Full text link
    Particle production in p+p and central Pb+Pb collisions at LHC is discussed in the context of the statistical thermal model. For heavy-ion collisions, predictions of various particle ratios are presented. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in detail, and some of them, which are particularly appropriate to determine the chemical freeze-out point experimentally, are indicated. Considering elementary interactions on the other hand, we focus on strangeness production and its possible suppression. Extrapolating the thermal parameters to LHC energy, we present predictions of the statistical model for particle yields in p+p collisions. We quantify the strangeness suppression by the correlation volume parameter and discuss its influence on particle production. We propose observables that can provide deeper insight into the mechanism of strangeness production and suppression at LHC.Comment: 7 pages, 5 figures, conference contribution to "International school of nuclear physics", Erice, Sicily, 16 - 24 September 2008; Progress in Particle and Nuclear Physics, 2009, in pres

    Back Reaction of Hawking Radiation on Black Hole Geometry

    Full text link
    We propose a model for the geometry of a dynamical spherical shell in which the metric is asymptotically Schwarzschild, but deviates from Ricci-flatness in a finite neighbourhood of the shell. Hence, the geometry corresponds to a `hairy' black hole, with the hair originating on the shell. The metric is regular for an infalling shell, but it bifurcates, leading to two disconnected Schwarzschild-like spacetime geometries. The shell is interpreted as either collapsing matter or as Hawking radiation, depending on whether or not the shell is infalling or outgoing. In this model, the Hawking radiation results from tunnelling between the two geometries. Using this model, the back reaction correction from Hawking radiation is calculated.Comment: Latex file, 15 pages, 4 figures enclosed, uses eps

    Reinventing spacetime on a dynamical hypersurface

    Full text link
    In braneworld models, Space-Time-Matter and other Kaluza-Klein theories, our spacetime is devised as a four-dimensional hypersurface {\it orthogonal} to the extra dimension in a five-dimensional bulk. We show that the FRW line element can be "reinvented" on a dynamical four-dimensional hypersurface, which is {\it not} orthogonal to the extra dimension, without any internal contradiction. This hypersurface is selected by the requirement of continuity of the metric and depends explicitly on the evolution of the extra dimension. The main difference between the "conventional" FRW, on an orthogonal hypersurface, and the new one is that the later contains higher-dimensional modifications to the regular matter density and pressure in 4D. We compare the evolution of the spacetime in these two interpretations. We find that a wealth of "new" physics can be derived from a five-dimensional metric if it is interpreted on a dynamical (non-orthogonal) 4D hypersurface. In particular, in the context of a well-known cosmological metric in 5D5D, we construct a FRW model which is consistent with the late accelerated expansion of the universe, while fitting simultaneously the observational data for the deceleration parameter. The model predicts an effective equation of state for the universe, which is consistent with observations.Comment: References added to the Introduction, and Abstract modified. Accepted for publication in Mod. Phys. Lett.

    Statistical Model Predictions for Pb-Pb Collisions at LHC

    Get PDF
    The systematics of Statistical Model parameters extracted from heavy-ion collisions at lower energies are exploited to extrapolate in the LHC regime. Predictions of various particle ratios are presented and particle production in central Pb-Pb collisions at LHC is discussed in the context of the Statistical Model. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in detail, and some of them, which are particularly appropriate to determine the chemical freeze-out point experimentally, are indicated. The impact of feed-down contributions from resonances, especially to light hadrons, is illustrated.Comment: 5 pages, 2 figures, 1 table, SQM 2006 conference proceedings, accepted for publication in J. Phys.
    • …
    corecore