9,215 research outputs found

    Hawking Radiation as Tunneling

    Get PDF
    We present a short and direct derivation of Hawking radiation as a tunneling process, based on particles in a dynamical geometry. The imaginary part of the action for the classically forbidden process is related to the Boltzmann factor for emission at the Hawking temperature. Because the derivation respects conservation laws, the exact spectrum is not precisely thermal. We compare and contrast the problem of spontaneous emission of charged particles from a charged conductor.Comment: LaTeX, 10 pages; v2. journal version, added section on relation of black hole radiation to electric charge emission from a charged conducting sphere; v3. restored cut referenc

    Chiral black hole in three-dimensional gravitational Chern-Simons

    Full text link
    A chiral black hole can be defined from the three-dimensional pure gravitational Chern-Simons action as an independent gravitational theory. The third order derivative of the Cotton tensor gives a dimensional constant which plays a role of the cosmological constant. The handedness of angular momentum depends on the signature of the Chern-Simons coefficient. Even in the massless black hole which corresponds to the static black hole, it has a nonvanishing angular momentum. We also study statistical entropy and thermodynamic stability.Comment: 6 pages, a reference added, minor changes to introductio

    Interaction cost of non-local gates

    Get PDF
    We introduce the interaction cost of a non-local gate as the minimal time of interaction required to perform the gate when assisting the process with fast local unitaries. This cost, of interest both in the areas of quantum control and quantum information, depends on the specific interaction, and allows to compare in an operationally meaningful manner any two non-local gates. In the case of a two-qubit system, an analytical expression for the interaction cost of any unitary operation given any coupling Hamiltonian is obtained. One gate may be more time-consuming than another for any possible interaction. This defines a partial order structure in the set of non-local gates, that compares their degree of non-locality. We analytically characterize this partial order in a region of the set of two-qubit gates.Comment: revtex, 4 pages, no pictures, typos corrected, small changes in nomenclatur

    Coulomb Drag as a Probe of the Nature of Compressible States in a Magnetic Field

    Full text link
    Magneto-drag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At \nu=3/2 a clear T^{4/3} dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.Comment: 5 pages, 4 figure

    Causal structures and the classification of higher order quantum computations

    Full text link
    Quantum operations are the most widely used tool in the theory of quantum information processing, representing elementary transformations of quantum states that are composed to form complex quantum circuits. The class of quantum transformations can be extended by including transformations on quantum operations, and transformations thereof, and so on up to the construction of a potentially infinite hierarchy of transformations. In the last decade, a sub-hierarchy, known as quantum combs, was exhaustively studied, and characterised as the most general class of transformations that can be achieved by quantum circuits with open slots hosting variable input elements, to form a complete output quantum circuit. The theory of quantum combs proved to be successful for the optimisation of information processing tasks otherwise untreatable. In more recent years the study of maps from combs to combs has increased, thanks to interesting examples showing how this next order of maps requires entanglement of the causal order of operations with the state of a control quantum system, or, even more radically, superpositions of alternate causal orderings. Some of these non-circuital transformations are known to be achievable and have even been achieved experimentally, and were proved to provide some computational advantage in various information-processing tasks with respect to quantum combs. Here we provide a formal language to form all possible types of transformations, and use it to prove general structure theorems for transformations in the hierarchy. We then provide a mathematical characterisation of the set of maps from combs to combs, hinting at a route for the complete characterisation of maps in the hierarchy. The classification is strictly related to the way in which the maps manipulate the causal structure of input circuits.Comment: 12 pages, revtex styl

    Stabilized hot electron bolometer heterodyne receiver at 2.5 THz

    Get PDF
    We report on a method to stabilize a hot electron bolometer (HEB) mixer at 2.5 THz. The technique utilizes feedback control of the local oscillator (LO) laser power by means of a swing-arm actuator placed in the optical beam path. We demonstrate that this technique yields a factor of 50 improvement in the spectroscopic Allan variance time which is shown to be over 30 s in a 12 MHz noise fluctuation bandwidth. Furthermore, broadband signal direct detection effects may be minimized by this technique. The technique is versatile and can be applied to practically any local oscillator at any frequency

    Characterization of tomographically faithful states in terms of their Wigner function

    Full text link
    A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries a complete information about the operation itself. Tomographically faithful states are a necessary ingredient for tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes.Comment: 9 pages. IOPAMS style. Some improvement

    Evolution equation of entanglement for general bipartite systems

    Full text link
    We explore how entanglement of a general bipartite system evolves when one subsystem undergoes the action of an arbitrary noisy channel. It is found that the dynamics of entanglement for general bipartite systems under the influence of such channel is determined by the channel's action on the maximally entangled state, which includes as a special case the results for two-qubit systems [Nature Physics 4, 99 (2008)]. In particular, for multi-qubit or qubit-qudit systems, we get a general factorization law for evolution equation of entanglement with one qubit being subject to a noisy channel. Our results can help the experimental characterization of entanglement dynamics.Comment: 4 pages, 1 figur

    Activated Transport in the individual Layers that form the νT\nu_T=1 Exciton Condensate

    Full text link
    We observe the total filling factor νT\nu_{T}=1 quantum Hall state in a bilayer two-dimensional electron system with virtually no tunnelling. We find thermally activated transport in the balanced system with a monotonic increase of the activation energy with decreasing d/ℓBd/\ell_B below 1.65. In the imbalanced system we find activated transport in each of the layers separately, yet the activation energies show a striking asymmetry around the balance point. This implies that the gap to charge-excitations in the {\em individual} layers is substantially different for positive and negative imbalance.Comment: 4 pages. 4 figure

    Quantum fields in gravity

    Full text link
    We give a brief description of some compelling connections between general relativity and thermodynamics through i) the semi-classical tunnelling method(s) and ii) the field-theoretical modelling of Unruh-DeWitt detectors. In both approaches it is possible to interpret some quantities in a thermodynamical frame.Comment: 4 pages, no figures, contribution to the proceedings of the conference "Relativity and Gravitation - 100 years after Einstein in Prague
    • …
    corecore