148 research outputs found

    Fragmentation of electric currents in the solar corona by plasma flows

    Full text link
    We consider a magnetic configuration consisting of an arcade structure and a detached plasmoid, resulting from a magnetic reconnection process, as is typically found in connection with solar flares. We study spontaneous current fragmentation caused by shear and vortex plasma flows. An exact analytical transformation method was applied to calculate self-consistent solutions of the nonlinear stationary MHD equations. The assumption of incompressible field-aligned flows implies that both the Alfven Mach number and the mass density are constant on field lines. We first calculated nonlinear MHS equilibria with the help of the Liouville method, emulating the scenario of a solar eruptive flare configuration with plasmoids and flare arcade. Then a Mach number profile was constructed that describes the upflow along the open magnetic field lines and implements a vortex flow inside the plasmoid. This Mach number profile was used to map the MHS equilibrium to the stationary one. We find that current fragmentation takes place at different locations within our configuration. Steep gradients of the Alfven Mach number are required, implying the strong influence of shear flows on current amplification and filamentation of the MHS current sheets. Crescent- or ring-like structures appear along the outer separatrix, butterfly structures between the upper and lower plasmoids, and strong current peaks close the lower boundary. Impressing an intrinsic small-scale structure on the upper plasmoid results in strong fragmentation of the plasmoid. Hence fragmentation of current sheets and plasmoids is an inherent property of MHD theory. Transformations from MHS into MHD steady-states deliver fine-structures needed for plasma heating and acceleration of particles and bulk plasma flows in dissipative events that are typically connected to magnetic reconnection processes in flares and coronal mass ejections.Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    MHD flows at astropauses and in astrotails

    Full text link
    The geometrical shapes and the physical properties of stellar wind -- interstellar medium interaction regions form an important stage for studying stellar winds and their embedded magnetic fields as well as cosmic ray modulation. Our goal is to provide a proper representation and classification of counter-flow configurations and counter-flow interfaces in the frame of fluid theory. In addition we calculate flows and large-scale electromagnetic fields based on which the large-scale dynamics and its role as possible background for particle acceleration, e.g. in the form of anomalous cosmic rays, can be studied. We find that for the definition of the boundaries, which are determining the astropause shape, the number and location of magnetic null points and stagnation points is essential. Multiple separatrices can exist, forming a highly complex environment for the interstellar and stellar plasma. Furthermore, the formation of extended tail structures occur naturally, and their stretched field and streamlines provide surroundings and mechanisms for the acceleration of particles by field-aligned electric fields.Comment: 10 pages, 4 Figure
    • …
    corecore