1 research outputs found

    Anderson localization transition with long-ranged hoppings : analysis of the strong multifractality regime in terms of weighted Levy sums

    Full text link
    For Anderson tight-binding models in dimension dd with random on-site energies ϵr⃗\epsilon_{\vec r} and critical long-ranged hoppings decaying typically as Vtyp(r)∼V/rdV^{typ}(r) \sim V/r^d, we show that the strong multifractality regime corresponding to small VV can be studied via the standard perturbation theory for eigenvectors in quantum mechanics. The Inverse Participation Ratios Yq(L)Y_q(L), which are the order parameters of Anderson transitions, can be written in terms of weighted L\'evy sums of broadly distributed variables (as a consequence of the presence of on-site random energies in the denominators of the perturbation theory). We compute at leading order the typical and disorder-averaged multifractal spectra τtyp(q)\tau_{typ}(q) and τav(q)\tau_{av}(q) as a function of qq. For q<1/2q<1/2, we obtain the non-vanishing limiting spectrum τtyp(q)=τav(q)=d(2q−1)\tau_{typ}(q)=\tau_{av}(q)=d(2q-1) as V→0+V \to 0^+. For q>1/2q>1/2, this method yields the same disorder-averaged spectrum τav(q)\tau_{av}(q) of order O(V)O(V) as obtained previously via the Levitov renormalization method by Mirlin and Evers [Phys. Rev. B 62, 7920 (2000)]. In addition, it allows to compute explicitly the typical spectrum, also of order O(V)O(V), but with a different qq-dependence τtyp(q)≠τav(q)\tau_{typ}(q) \ne \tau_{av}(q) for all q>qc=1/2q>q_c=1/2. As a consequence, we find that the corresponding singularity spectra ftyp(α)f_{typ}(\alpha) and fav(α)f_{av}(\alpha) differ even in the positive region f>0f>0, and vanish at different values α+typ>α+av\alpha_+^{typ} > \alpha_+^{av}, in contrast to the standard picture. We also obtain that the saddle value αtyp(q)\alpha_{typ}(q) of the Legendre transform reaches the termination point α+typ\alpha_+^{typ} where ftyp(α+typ)=0f_{typ}(\alpha_+^{typ})=0 only in the limit q→+∞q \to +\infty.Comment: 13 pages, 2 figures, v2=final versio
    corecore