831 research outputs found

    Seasonal and Energy Dependence of Solar Neutrino Vacuum Oscillations

    Get PDF
    We make a global vacuum neutrino oscillation analysis of solar neutrino data, including the seasonal and energy dependence of the recent Super-Kamiokande 708-day results. The best fit parameters for \nu_e oscillations to an active neutrino are \delta m^2 = 4.42\times10^{-10} eV^2, \sin^2 2\theta = 0.93. The allowed mixing angle region is consistent with bi-maximal mixing of three neutrinos. Oscillations to a sterile neutrino are disfavored. Allowing an enhanced hep neutrino flux does not significantly alter the oscillation parameters.Comment: Latex2.09, 10 pages, uses epsf.sty, 3 postscript figure

    Quantum analysis of pharmacodynamics in phytotherapy - methodology

    Get PDF
    Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° лСкарствСно дСйствиС сС Ρ‚ΡŠΡ€ΡΡΡ‚ ΠΈ изслСдват взаимодСйствията Π½Π° лСкарствСнитС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈ структури. Π’ΡŠΠ²Π΅Π΄Π΅Π½ΠΈΡΡ‚ ΠΎΡ‚ нас ΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· с β€žΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ Π½Π° ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅Ρ‚ΠΎ` Π΄Π°Π²Π° Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ Π·Π° Π΅Π΄Π½ΠΎ ясно Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎ ΠΈ практичСски ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌΠΎ Π΄ΡŠΠ»Π±ΠΎΡ‡ΠΈΠ½Π½ΠΎ (Π½Π° Π½ΠΈΠ²ΠΎ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½, ΠΏΡ€ΠΎΡ‚ΠΎΠ½, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Π° частица) изясняванС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΈΡ‚Π΅ Π½Π° взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ лСкарствСното вСщСство ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π°Ρ‚Π° структура. Π’ΠΎΠ²Π° Π΅ Π²Ρ‚ΠΎΡ€Π°Ρ‚Π° част ΠΎΡ‚ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΡ‚ΠΎ изслСдванС. Π¦Π΅Π»Ρ‚Π° Π½Π° настоящия Π΄ΠΎΠΊΠ»Π°Π΄ Π΅ Π΄Π° прСдстави мСтодологията Π½Π° квантовия Π°Π½Π°Π»ΠΈΠ· Π½Π° Ρ„Π°Ρ€ΠΌΠ°-ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°Ρ‚Π° във фитотСрапията, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ Π΄Π° ΠΎΡ‚Π³ΠΎΠ²ΠΎΡ€ΠΈ Π½Π° слСднитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ: 1. Π‘ΡŠΡ‰Π΅ΡΡ‚Π²ΡƒΠ²Π° Π»ΠΈ Π΅Π΄ΠΈΠ½Π΅Π½ унивСрсалСн ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΡŠΠΌ Π·Π° обяснСниС Π½Π° лСкарствСно дСйствиС Π½Π° ΠΌΠΈΠΊΡ€ΠΎΠ½ΠΈΠ²ΠΎ: Π°Ρ‚ΠΎΠΌ, Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½, ΠΏΡ€ΠΎΡ‚ΠΎΠ½, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Π° частица - Ρ‚Π°ΠΌ, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ няма Ρ€Π°Π·Π»ΠΈΠΊΠ° Π² условнитС понятия Π·Π° ΠΆΠΈΠ²Π° ΠΈ Π½Π΅ΠΆΠΈΠ²Π° матСрия. 2. Π’ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ Π΅ Π΅Π΄ΠΈΠ½ Π΅Π΄ΠΈΠ½Π΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΡŠΠΌ Π½Π° Π»Π΅Ρ‡Π΅Π±Π½ΠΎ взаимодСйствиС, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π² процСситС Π½Π° изслСдванС Π½Π° Ρ„ΠΈΡ‚ΠΎΡ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΈΡ‡Π½ΠΈ Π²ΡŠΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ Π²ΡŠΡ€Ρ…Ρƒ Π±ΠΎΠ»Π½Π°Ρ‚Π° ΠΊΠ»Π΅Ρ‚ΠΊΠ°, Π΄Π° сС ΠΎΠΊΠ°ΠΆΠ΅ унивСрсалСн ΠΎΡ‚Π³ΠΎΠ²ΠΎΡ€ Π½Π° поставСнитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ? ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΡŠΡ‚ Π½Π° изслСдванСто ΠΎΠ±Ρ…Π²Π°Ρ‰Π° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ‚Π΅, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π½ΠΈΡ‚Π΅ ΠΈ практичСскитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ, ΡΠ²ΡŠΡ€Π·Π°Π½ΠΈ с Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π²Π°Π½Π΅Ρ‚ΠΎ Π½Π° Π΅Π΄ΠΈΠ½Π΅Π½ унивСрсалСн ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π° ΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· с нСговия ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Π½Π° ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅, ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌ Π² процСситС Π½Π° Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π½Π° лСкарствСнитС вСщСства във фитотСрапията Π² частност ΠΈ Π²ΡŠΠΎΠ±Ρ‰Π΅ - във фармакотСрапията. Π’ процСса Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ рСализация Π½Π° прСдлагания ΠΌΠ΅Ρ‚ΠΎΠ΄ сС Ρ€Π°Π·ΠΊΡ€ΠΈΠ²Π°Ρ‚ Ρ€Π΅Π°Π»Π½ΠΈ Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ Π·Π° ΠΊΠΎΡ€Π΅Π½Π½ΠΎ Π½ΠΎΠ² Π½Π°Ρ‡ΠΈΠ½ Π·Π° ΠΏΠΎΠ΄Π±ΠΎΡ€ ΠΈ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° лСкарствСнитС вСщСства Π² Π»Π΅Ρ‡Π΅Π±Π½ΠΈΡ‚Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΎΡ‚ раститСлСн ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π°Ρ‚Π° Π½Π°ΡƒΡ‡Π½ΠΎ-практичСска ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π½Π° β€žΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· Π½Π° Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° във фитотСрапията` сС явява Π΄ΠΎΡΡ‚Π°Ρ‚ΡŠΡ‡Π½ΠΎ ΡƒΡΠΏΠ΅ΡˆΠ΅Π½ ΠΎΠΏΠΈΡ‚ Π·Π° обяснСниС Π½Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° дСйствиС Π½Π° лСкарствСнитС вСщСства Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈΡ‚Π΅ структури, ΠΏΠΎΡ‡ΠΈΠ²Π°Ρ‰Π° Π½Π° Π½Π°ΠΉ-Π½ΠΎΠ²ΠΈΡ‚Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π·Π° ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄Π° ΠΈ структурата Π½Π° матСрията ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π° Π² нашия свят.The mechanism of drug action seeks and investigates the interactions of drug molecules with certain biological structures. The quantum analysis of the Equivalency Principle gives us a clear, theoretical and practical applicability of the mechanisms of interaction between the drug substance and the biological structure (at the level of electrons, protons, or elementary particles). The purpose of this article is to describe the methodology of quantum analysis of pharmacodynamics in phytotherapy as well as to answer the following questions: 1. Is there a universal mechanism for explanation of the micro-level drug action: atom, electron, proton, elementary particle - where there is no difference in the relative concepts of living and non-living matter? 2. Is it possible that a single mechanism of healing interaction obtained in the study of phytotherapeutic effects on the diseased cell would be a universal answer to the questions raised here? The subject of the study covers the theoretical, methodological and practical issues related to the development of a unified universal quantum analysis method with its principle of similarity applied in the pharmacodynamics processes of the drug substances in phytotherapy in particular, and in pharmacotherapy in general. In the process of development and realization of the quantum analysis of pharmacodynamics in phytotherapy, the authors offered the real possibilities for a radically new way of selection and application of the medicinal substances in the healing practices of plant origin. The proposed scientific and practical methodology of β€žquantum analysis of pharmacodynamics in phytotherapy` is a sufficiently successful attempt to explain the mechanism of action of the drug substances in biological structures based on the latest theories about the origin and structure of matter and life in our world

    Quantum analysis of pharmacodynamics in phytotherapy - introduction

    Get PDF
    Π€Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°Ρ‚Π° ΠΊΠ°Ρ‚ΠΎ ΠΊΠ»ΠΎΠ½ Π½Π° ΠΎΠ±Ρ‰Π°Ρ‚Π° фармакология сС Π·Π°Π½ΠΈΠΌΠ°Π²Π° с ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° Π»Π΅ΠΊΠ°Ρ€-ствСното дСйствиС ΠΈ СфСктивността Π½Π° лСкарствСнитС срСдства. Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° лСкарствСно дСйствиС сС Ρ‚ΡŠΡ€ΡΡΡ‚ ΠΈ изслСдват взаимодСйствията Π½Π° лСкарствСнитС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈ Π±ΠΈ-ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈ структури. Π¦Π΅Π»Ρ‚Π° Π½Π° настоящото изслСдванС Π΅ Π΄Π° ΠΎΡ‚Π³ΠΎΠ²ΠΎΡ€ΠΈ Π½Π° слСднитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ: 1. Π”ΠΎΡΡ‚Π°Ρ‚ΡŠΡ‡Π½ΠΎ пълно Π»ΠΈ Π΅ изяснСн Π²ΡŠΠΏΡ€ΠΎΡΡŠΡ‚ с ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° взаимодСйствиСто Π½Π° лСкарствСното вСщСство, рСспСктивно лСкарствСната ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°, с ΠΏΡ€ΠΈΠ΅ΠΌΠ½Π°Ρ‚Π° ΠΊΠ»Π΅Ρ‚ΠΊΠ°, Ρ‚ΡŠΠΊΠ°Π½ ΠΈΠ»ΠΈ ΠΎΡ€Π³Π°Π½ ΠΎΡ‚ физичСското тяло. 2. Π‘ΡŠΡ‰Π΅ΡΡ‚Π²ΡƒΠ²Π° Π»ΠΈ Π΅Π΄ΠΈΠ½Π΅Π½ унивСрсалСн ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΡŠΠΌ Π·Π° обяснСниС Π½Π° лСкарствСно дСйствиС Π½Π° ΠΌΠΈ-ΠΊΡ€ΠΎΠ½ΠΈΠ²ΠΎ: Π°Ρ‚ΠΎΠΌ, Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½, ΠΏΡ€ΠΎΡ‚ΠΎΠ½, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Π° частица - Ρ‚Π°ΠΌ, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ няма Ρ€Π°Π·Π»ΠΈΠΊΠ° Π² условнитС понятия Π·Π° ΠΆΠΈΠ²Π° ΠΈ Π½Π΅ΠΆΠΈΠ²Π° матСрия. 3. Π’ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ Π΅ Π΅Π΄ΠΈΠ½ Π΅Π΄ΠΈΠ½Π΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΡŠΠΌ Π½Π° Π»Π΅Ρ‡Π΅Π±Π½ΠΎ взаимодСйствиС, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π² процСситС Π½Π° изслСдванС Π½Π° Ρ„ΠΈΡ‚ΠΎΡ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΈΡ‡Π½ΠΈ Π²ΡŠΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ Π²ΡŠΡ€Ρ…Ρƒ Π±ΠΎΠ»Π½Π°Ρ‚Π° ΠΊΠ»Π΅Ρ‚ΠΊΠ°, Π΄Π° сС ΠΎΠΊΠ°ΠΆΠ΅ унивСрсалСн ΠΎΡ‚Π³ΠΎΠ²ΠΎΡ€ Π½Π° поставСнитС Ρ‚ΡƒΠΊ Π²ΡŠΠΏΡ€ΠΎΡΠΈ? ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΡŠΡ‚ Π½Π° изслСдванСто ΠΎΠ±Ρ…Π²Π°Ρ‰Π° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ‚Π΅, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π½ΠΈΡ‚Π΅ ΠΈ практичСскитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ, ΡΠ²ΡŠΡ€Π·Π°Π½ΠΈ с Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π²Π°Π½Π΅Ρ‚ΠΎ Π½Π° Π΅Π΄ΠΈΠ½Π΅Π½ унивСрсалСн ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π° ΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· с нСговия ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Π½Π° ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅, ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌ Π² процСситС Π½Π° Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π½Π° лСкарствСнитС вСщСства във фитотСрапията Π² частност ΠΈ Π²ΡŠΠΎΠ±Ρ‰Π΅ - във фармакотСрапията. Π’ процСса Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ рСализация Π½Π° прСдлагания ΠΌΠ΅Ρ‚ΠΎΠ΄ сС Ρ€Π°Π·ΠΊΡ€ΠΈΠ²Π°Ρ‚ Ρ€Π΅Π°Π»Π½ΠΈ Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ Π·Π° ΠΊΠΎΡ€Π΅Π½Π½ΠΎ Π½ΠΎΠ² Π½Π°Ρ‡ΠΈΠ½ Π·Π° ΠΏΠΎΠ΄Π±ΠΎΡ€ ΠΈ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° лСкарствСнитС вСщСства Π² Π»Π΅Ρ‡Π΅Π±Π½ΠΈΡ‚Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΎΡ‚ раститСлСн ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π°Ρ‚Π° Π½Π°ΡƒΡ‡Π½ΠΎ-практичСска ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π½Π° β€žΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· Π½Π° Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° във фитотСрапията` сС явява Π΄ΠΎΡΡ‚Π°Ρ‚ΡŠΡ‡Π½ΠΎ ΡƒΡΠΏΠ΅ΡˆΠ΅Π½ ΠΎΠΏΠΈΡ‚ Π·Π° обяснСниС Π½Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° дСйствиС Π½Π° лСкарствСнитС вСщСства Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈΡ‚Π΅ структури, ΠΏΠΎΡ‡ΠΈΠ²Π°Ρ‰Π° Π½Π° Π½Π°ΠΉ-Π½ΠΎΠ²ΠΈΡ‚Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π·Π° ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄Π° ΠΈ структурата Π½Π° матСрията ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π° Π² нашия свят.Pharmacodynamics, as a branch of general pharmacology, deals with the mechanism of drug action and efficacy of drugs. The mechanism of drug action seeks and investigates the interactions of drug molecules with certain biological structures. The purpose of this research is to answer the following questions: 1. Is the issue of a mechanism for the interaction of the drug substance or drug molecule with the host cell, tissue or organ of the physical body sufficiently clear? 2. Is there a universal mechanism for explanation of the micro-level drug action: atom, electron, proton, elementary particle - where there is no difference in the relative concepts of living and non-living matter? 3. Is it possible that a single mechanism of healing interaction obtained in the phytotherapeutic effects study on the diseased cell would be a universal answer to the questions raised here? The subject of the study covers the theoretical, methodological and practical issues related to the development of a unified universal quantum analysis method with its principle of similarity applied in the pharmacodynamics processes of the drug substances in phytotherapy, in particular, and in pharmacotherapy in general. In the process of development and realization of the quantum analysis of pharmacodynamics in phytotherapy, the authors offered the real possibilities for a radically new way of selection and application of the medicinal substances in the healing practices of plant origin. The proposed scientific and practical methodology of β€žquantum analysis of pharmacodynamics in phytotherapy` is a sufficiently successful attempt to explain the mechanism of action of the drug substances in biological structures based on the latest theories about the origin and structure of matter and life in our world

    Quantum analysis of pharmacodynamics in phytotherapy - research results

    Get PDF
    Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° лСкарствСно дСйствиС сС Ρ‚ΡŠΡ€ΡΡΡ‚ ΠΈ изслСдват взаимодСйствията Π½Π° лСкарствСнитС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈ структури. Π’ΡŠΠ²Π΅Π΄Π΅Π½ΠΈΡΡ‚ ΠΎΡ‚ нас ΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· с β€žΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ Π½Π° ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅Ρ‚ΠΎ` Π΄Π°Π²Π° Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ Π·Π° Π΅Π΄Π½ΠΎ ясно Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎ ΠΈ практичСски ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌΠΎ Π΄ΡŠΠ»Π±ΠΎΡ‡ΠΈΠ½Π½ΠΎ (Π½Π° Π½ΠΈΠ²ΠΎ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½, ΠΏΡ€ΠΎΡ‚ΠΎΠ½, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Π° частица) изясняванС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΈΡ‚Π΅ Π½Π° взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ лСкарствСното вСщСство ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π°Ρ‚Π° структура. Π’ΠΎΠ²Π° Π΅ Ρ‚Ρ€Π΅Ρ‚Π°Ρ‚Π° част ΠΎΡ‚ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΡ‚ΠΎ изслСдванС. Π¦Π΅Π»Ρ‚Π° Π½Π° настоящия Π΄ΠΎΠΊΠ»Π°Π΄ Π΅ Π΄Π° прСдстави Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅ ΠΎΡ‚ квантовия Π°Π½Π°Π»ΠΈΠ· Π½Π° Ρ„Π°Ρ€ΠΌΠ°-ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°Ρ‚Π° във фитотСрапията, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ Π΄Π° ΠΎΡ‚Π³ΠΎΠ²ΠΎΡ€ΠΈ Π½Π° слСдния Π²ΡŠΠΏΡ€ΠΎΡ: 1. Π’ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ Π΅ Π΅Π΄ΠΈΠ½ Π΅Π΄ΠΈΠ½Π΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΡŠΠΌ Π½Π° Π»Π΅Ρ‡Π΅Π±Π½ΠΎ взаимодСйствиС, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π² процСситС Π½Π° изслСдванС Π½Π° Ρ„ΠΈΡ‚ΠΎΡ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΈΡ‡Π½ΠΈ Π²ΡŠΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ Π²ΡŠΡ€Ρ…Ρƒ Π±ΠΎΠ»Π½Π°Ρ‚Π° ΠΊΠ»Π΅Ρ‚ΠΊΠ°, Π΄Π° сС ΠΎΠΊΠ°ΠΆΠ΅ унивСрсалСн ΠΎΡ‚Π³ΠΎΠ²ΠΎΡ€ Π½Π° поставСнитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ? ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΡŠΡ‚ Π½Π° изслСдванСто ΠΎΠ±Ρ…Π²Π°Ρ‰Π° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ‚Π΅, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π½ΠΈΡ‚Π΅ ΠΈ практичСскитС Π²ΡŠΠΏΡ€ΠΎΡΠΈ, ΡΠ²ΡŠΡ€Π·Π°Π½ΠΈ с Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π²Π°Π½Π΅Ρ‚ΠΎ Π½Π° Π΅Π΄ΠΈΠ½Π΅Π½ унивСрсалСн ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π° ΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· с нСговия ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Π½Π° ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅, ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌ Π² процСситС Π½Π° Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π½Π° лСкарствСнитС вСщСства във фитотСрапията Π² частност ΠΈ Π²ΡŠΠΎΠ±Ρ‰Π΅ - във фармакотСрапията. Π’ процСса Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ рСализация Π½Π° прСдлагания ΠΌΠ΅Ρ‚ΠΎΠ΄ сС Ρ€Π°Π·ΠΊΡ€ΠΈΠ²Π°Ρ‚ Ρ€Π΅Π°Π»Π½ΠΈ Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ Π·Π° ΠΊΠΎΡ€Π΅Π½Π½ΠΎ Π½ΠΎΠ² Π½Π°Ρ‡ΠΈΠ½ Π·Π° ΠΏΠΎΠ΄Π±ΠΎΡ€ ΠΈ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° лСкарствСнитС вСщСства Π² Π»Π΅Ρ‡Π΅Π±Π½ΠΈΡ‚Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΎΡ‚ раститСлСн ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π°Ρ‚Π° Π½Π°ΡƒΡ‡Π½ΠΎ-практичСска ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π½Π° β€žΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π°Π½Π°Π»ΠΈΠ· Π½Π° Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° във фитотСрапията` сС явява Π΄ΠΎΡΡ‚Π°Ρ‚ΡŠΡ‡Π½ΠΎ ΡƒΡΠΏΠ΅ΡˆΠ΅Π½ ΠΎΠΏΠΈΡ‚ Π·Π° обяснСниС Π½Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° дСйствиС Π½Π° лСкарствСнитС вСщСства Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈΡ‚Π΅ структури, ΠΏΠΎΡ‡ΠΈΠ²Π°Ρ‰Π° Π½Π° Π½Π°ΠΉ-Π½ΠΎΠ²ΠΈΡ‚Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π·Π° ΠΏΡ€ΠΎΠΈΠ·Ρ…ΠΎΠ΄Π° ΠΈ структурата Π½Π° матСрията ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π° Π² нашия свят.The mechanism of drug action seeks and investigates the interactions of drug molecules with certain biological structures. The quantum analysis of the Equivalency Principle gives us a clear, theoretical and practical applicability of the mechanisms of interaction between the drug substance and the biological structure (at the level of electrons, protons, or elementary particles). This is the third part of the conducted research. The purpose of this article is to represent the results of the conducted quantum analysis of pharmacodynamics in phytotherapy as well as to answer the following question: Is it possible that a single mechanism of healing interaction obtained in the study of phytotherapeutic effects on the diseased cell would be a universal answer to the questions raised here? The subject of the study covers the theoretical, methodological and practical issues related to the development of a unified universal quantum analysis method with its principle of similarity applied in the pharmacodynamics processes of the drug substances in phytotherapy in particular, and in pharmacotherapy in general. In the process of development and realization of the quantum analysis of pharmacodynamics in phytotherapy, the authors offered the real possibilities for a radically new way of selection and application of the medicinal substances in the healing practices of plant origin. The proposed scientific and practical methodology of β€žquantum analysis of pharmacodynamics in phytotherapy` is a sufficiently successful attempt to explain the mechanism of action of the drug substances in biological structures based on the latest theories about the origin and structure of matter and life in our world

    Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    Full text link
    The eigen-frequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an Equation of State (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigen-frequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the wIIw_{II}-mode is found to exist only for neutron stars having a compactness of M/Rβ‰₯0.1078M/R\geq 0.1078 independent of the EOS used.Comment: Version appeared in Phys. Rev. C80, 025801 (2009

    A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability

    Full text link
    This is the first of two articles aimed at providing comprehensive predictions for the day-night (D-N) effect for the Super-Kamiokande detector in the case of the MSW \nu_e \to \numt transition solution of the solar neutrino problem. The one-year averaged probability of survival of the solar \nue crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core + mantle) is calculated with high precision (better than 1%) using the elliptical orbit approximation (EOA) to describe the Earth motion around the Sun. Results for the survival probability in the indicated cases are obtained for a large set of values of the MSW transition parameters Ξ”m2\Delta m^2 and sin22ΞΈVsin^22\theta_{V} from the ``conservative'' regions of the MSW solution, derived by taking into account possible relatively large uncertainties in the values of the 8^{8}B and 7^{7}Be neutrino fluxes. Our results show that the one-year averaged D-N asymmetry in the Ξ½e\nu_e survival probability for neutrinos crossing the Earth core can be, in the case of sin22ΞΈV≀0.13sin^22 \theta_{V} \leq 0.13, larger than the asymmetry in the probability for (only mantle crossing + core crossing) neutrinos by a factor of up to six. The enhancement is larger in the case of neutrinos crossing the inner 2/3 of the core. This indicates that the Super-Kamiokande experiment might be able to test the sin22ΞΈV≀0.01sin^22\theta_{V} \leq 0.01 region of the MSW solution of the solar neutrino problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS + text file sk1b14.tex requires two auxiliary files (included

    Non-adiabatic level crossing in (non-) resonant neutrino oscillations

    Get PDF
    We study neutrino oscillations and the level-crossing probability P_{LZ}=\exp(-\gamma_n\F_n\pi/2) in power-law like potential profiles A(r)∝rnA(r)\propto r^n. After showing that the resonance point coincides only for a linear profile with the point of maximal violation of adiabaticity, we point out that the ``adiabaticity'' parameter Ξ³n\gamma_n can be calculated at an arbitrary point if the correction function \F_n is rescaled appropriately. We present a new representation for the level-crossing probability, P_{LZ}=\exp(-\kappa_n\G_n), which allows a simple numerical evaluation of PLZP_{LZ} in both the resonant and non-resonant cases and where \G_n contains the full dependence of PLZP_{LZ} on the mixing angle ΞΈ\theta. As an application we consider the case n=βˆ’3n=-3 important for oscillations of supernova neutrinos.Comment: 4 pages, revtex, 3 eps figure

    New Constraints on Neutrino Oscillations in Vacuum as a Possible Solution of the Solar Neutrino Problem

    Full text link
    Two-neutrino oscillations in vacuum are studied as a possible solution of the solar neutrino problem. New constraints on the parameter sn2, characterizing the mixing of the electron neutrino with another active or sterile neutrino, as well as on the mass--squared difference, dm2, of their massive neutrino components, are derived using the latest results from the four solar neutrino experiments. Oscillations into a sterile neutrino are ruled out at 99 % C.L. by the observed mean event rates even if one includes the uncertainties of the standard solar model predictions in the analysis.Comment: 10 pages + 3 figures attached as postscript files, IFP-480-UNC and Ref. SISSA 177/93/EP (Updated Version which takes into account the latest GALLEX results from 30 runs

    Constraining a possible time variation of the gravitational constant G with terrestrial nuclear laboratory data

    Get PDF
    Testing the constancy of the gravitational constant G has been a longstanding fundamental question in natural science. As first suggested by Jofr\'{e}, Reisenegger and Fern\'{a}ndez [1], Dirac's hypothesis of a decreasing gravitational constant GG with time due to the expansion of the Universe would induce changes in the composition of neutron stars, causing dissipation and internal heating. Eventually, neutron stars reach their quasi-stationary states where cooling due to neutrino and photon emissions balances the internal heating. The correlation of surface temperatures and radii of some old neutron stars may thus carry useful information about the changing rate of G. Using the density dependence of the nuclear symmetry energy constrained by recent terrestrial laboratory data on isospin diffusion in heavy-ion reactions at intermediate energies and the size of neutron skin in 208Pb^{208}Pb within the gravitochemical heating formalism, we obtain an upper limit of the relative changing rate of ∣GΛ™/Gβˆ£β‰€4Γ—10βˆ’12yrβˆ’1|\dot{G}/G|\le4\times 10^{-12}yr^{-1} consistent with the best available estimates in the literature.Comment: 27 pages, 11 figures, and 2 tables. Accepted version to appear in PRC (2007

    Chizhov and Petcov Reply

    Full text link
    We have found in [1] new conditions for a total neutrino conversion in the case of neutrino oscillations taking place in a medium, consisting of n = 2 (or 3) alternating layers with constant densities N1N_1 and N2N_2. It is claimed in [4] that our results are particular case of enhancement of neutrino oscillations, which was suggested earlier by other authors and was widely discussed in the literature. We refute these claims, confirming the novelty of our results.Comment: 2 pages, LATEX; concise (essentially 1 page) and somewhat modified version of Ref. SISSA 5/2000/EP (hep-ph/0003110); reply on the ``Comment on New Conditions for a Total Neutrino Conversion in a Medium'', Phys. Rev. Lett. 85 (2000) 3978; published as ``Chizhov and Petcov Reply'' in Phys. Rev. Lett. 85 (2000) 397
    • …
    corecore