20 research outputs found

    Charge Transfer Reactions

    Full text link

    Formation of stars and planets: the role of magnetic fields

    Full text link
    Star formation is thought to be triggered by gravitational collapse of the dense cores of molecular clouds. Angular momentum conservation during the collapse results in the progressive increase of the centrifugal force, which eventually halts the inflow of material and leads to the development of a central mass surrounded by a disc. In the presence of an angular momentum transport mechanism, mass accretion onto the central object proceeds through this disc, and it is believed that this is how stars typically gain most of their mass. However, the mechanisms responsible for this transport of angular momentum are not well understood. Although the gravitational field of a companion star or even gravitational instabilities (particularly in massive discs) may play a role, the most general mechanisms are turbulence viscosity driven by the magnetorotational instability (MRI), and outflows accelerated centrifugally from the surfaces of the disc. Both processes are powered by the action of magnetic fields and are, in turn, likely to strongly affect the structure, dynamics, evolutionary path and planet-forming capabilities of their host discs. The weak ionisation of protostellar discs, however, may prevent the magnetic field from effectively coupling to the gas and shear and driving these processes. Here I examine the viability and properties of these magnetically-driven processes in protostellar discs. The results indicate that, despite the weak ionisation, the magnetic field is able to couple to the gas and shear for fluid conditions thought to be satisfied over a wide range of radii in these discs.Comment: Invited Review. 11 figures and 1 table. Accepted for publication in Astrophysics & Space Scienc

    Composition and Chemistry of the Neutral Atmosphere of Venus

    No full text

    Clouds and Hazes of Venus

    No full text

    Outgassing History and Escape of the Martian Atmosphere and Water Inventory

    No full text
    The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ∼500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ∼4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure

    Aeronomy of the Venus Upper Atmosphere

    No full text

    Outgassing History and Escape of the Martian Atmosphere and Water Inventory

    No full text
    corecore