11 research outputs found

    A Neural Network Nonlinear Multimodel Ensemble to Improve Precipitation Forecasts over Continental US

    No full text
    A novel multimodel ensemble approach based on learning from data using the neural network (NN) technique is formulated and applied for improving 24-hour precipitation forecasts over the continental US. The developed nonlinear approach allowed us to account for nonlinear correlation between ensemble members and to produce “optimal” forecast represented by a nonlinear NN ensemble mean. The NN approach is compared with the conservative multi-model ensemble, with multiple linear regression ensemble approaches, and with results obtained by human forecasters. The NN multi-model ensemble improves upon conservative multi-model ensemble and multiple linear regression ensemble, it (1) significantly reduces high bias at low precipitation level, (2) significantly reduces low bias at high precipitation level, and (3) sharpens features making them closer to the observed ones. The NN multi-model ensemble performs at least as well as human forecasters supplied with the same information. The developed approach is a generic approach that can be applied to other multi-model ensemble fields as well as to single model ensembles

    A neural network technique to improve computational efficiency of numerical oceanic models

    No full text
    A new generic approach to improve computational efficiency of certain processes in numerical environmental medols is formulated. This approach is based on the application of neural network (NN) techniques. It can be used to accelerate the calculations and improve the accuracy of the parameterizations of several types of physical processes which generally require computations involving complex mathematical expressions, including differential and integral equations, rules, restrictions and highly nonlinear emprical relations based on physical or statistical models. It is shown that, form a mathematical point of view, such parameterizations can usually be considered as continuous mappings (continuous dependencies between two vectors). It is also shown that NNs are a generic tool for fast and accurate approximation of continuous mappings and, therefore, can be used to replace primary parameterization algorithms. In addition to fast and accurate approximation of the primary parameterization, NN also provides the entire Jacobian for very little computation cost. Three successful particular of the NN approach are presented here: (1) a NN approximation of the UNESCO equation of state of the seawater (density of the seawater); (2) an inversion of this equation (salinity of the seawater); and (3) a NN approximation for the nonlinear wave-wave interaction. The first application has been implemented in the National Centers for Environmental Prediction multi-scale oceanic forecast system, and the second one is being developed for wind wave models. The NN approach introduced in this paper can provide numerically efficient solutions to a wide range of problems in environmental numerical models where lengthy, complicated calculations, which describe physical processes, must be repeated frequently

    Neural network approximations for nonlinear interactions in wind wave spectra: Direct mapping for wind seas in deep water

    No full text
    The potential of Neural Networks (NN) to provide accurate estimates of nonlinear interactions for wind wave spectra by means of direct mapping is considered. Expanding on a previously reported feasibility study, an Empirical Orthogonal Functions (EOF) based NN for single peaked spectra is shown to be much more accurate than the well known Discrete Interaction Approximation (DIA), at the expense of a moderate increase of computational costs. This Neural Network Interaction Approximation (NNIA) gives reasonable results for modeled wave spectra, but is not yet capable of providing acceptable model integrations. Methods to expand the NNIA to be suitable for model integration are discussed

    New approach to calculation of atmospheric model physics: accurate and fast neural network emulation of longwave radiation in a climate model

    No full text
    A new approach based on a synergetic combination of statistical/machine learning and deterministic modeling within atmospheric models is presented. The approach uses neural networks as a statistical or machine learning technique for an accurate and fast emulation or statistical approximation of model physics parameterizations. It is applied to development of an accurate and fast approximation of an atmospheric longwave radiation parameterization for the NCAR Community Atmospheric Model, which is the most time consuming component of model physics. The developed neural network emulation is two orders of magnitude, 50-80 times, faster than the original parameterization. A comparison of the parallel 1O-yr climate simulations performed with the original parameterization and its neural network emulations confirmed that these simulations produce almost identical results. The obtained results show the conceptual and practical possibility of an efficient synergetic combination of deterministic and statistical learning components within an atmospheric climate or forecast model. A developmental framework and practical validation criteria for neural network emulations of model physics components are outlined

    Using Ensemble of Neural Networks to Learn Stochastic Convection Parameterizations for Climate and Numerical Weather Prediction Models from Data Simulated by a Cloud Resolving Model

    Get PDF
    A novel approach based on the neural network (NN) ensemble technique is formulated and used for development of a NN stochastic convection parameterization for climate and numerical weather prediction (NWP) models. This fast parameterization is built based on learning from data simulated by a cloud-resolving model (CRM) initialized with and forced by the observed meteorological data available for 4-month boreal winter from November 1992 to February 1993. CRM-simulated data were averaged and processed to implicitly define a stochastic convection parameterization. This parameterization is learned from the data using an ensemble of NNs. The NN ensemble members are trained and tested. The inherent uncertainty of the stochastic convection parameterization derived following this approach is estimated. The newly developed NN convection parameterization has been tested in National Center of Atmospheric Research (NCAR) Community Atmospheric Model (CAM). It produced reasonable and promising decadal climate simulations for a large tropical Pacific region. The extent of the adaptive ability of the developed NN parameterization to the changes in the model environment is briefly discussed. This paper is devoted to a proof of concept and discusses methodology, initial results, and the major challenges of using the NN technique for developing convection parameterizations for climate and NWP models

    Reply

    No full text
    This reply is aimed at clarifying and further discussing the methodological aspects of this neural network application for a better understanding of the technique by the journal readership. The similarities and differences of two approaches and their areas of application are discussed. These two approaches outline a new interdisciplinary field based on application of neural networks (and probably other modern machine or statistical learning techniques) to significantly speed up calculations of time-consuming components of atmospheric and oceanic numerical models
    corecore