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A novel approach based on the neural network (NN) ensemble technique is formulated and used for development of a NN stochastic
convection parameterization for climate and numerical weather prediction (NWP) models. This fast parameterization is built based
on learning from data simulated by a cloud-resolving model (CRM) initialized with and forced by the observed meteorological data
available for 4-month boreal winter from November 1992 to February 1993. CRM-simulated data were averaged and processed to
implicitly define a stochastic convection parameterization. This parameterization is learned from the data using an ensemble of
NNs. The NN ensemble members are trained and tested. The inherent uncertainty of the stochastic convection parameterization
derived following this approach is estimated. The newly developed NN convection parameterization has been tested in National
Center of Atmospheric Research (NCAR) Community Atmospheric Model (CAM). It produced reasonable and promising decadal
climate simulations for a large tropical Pacific region. The extent of the adaptive ability of the developed NN parameterization to
the changes in the model environment is briefly discussed. This paper is devoted to a proof of concept and discusses methodology,
initial results, and the major challenges of using the NN technique for developing convection parameterizations for climate and
NWP models.

1. Introduction

Clouds and convection are among the most important and
complex phenomena of the Earth’s physical climate system.
In spite of intense studies for centuries, clouds still provide
an intellectual and computational challenge. Because of the
vast range of time and space scales involved, researchers
and models that they use typically focus on a particular
component of a cloud system, with a narrow range of time
and space scales, and prescribe features of the cloud that
operate outside of that range. For example, microphysical

models describing drop scale motions (e.g., drop coagula-
tion) deal with the fine spatial and temporal scales (of order
of millimeters (drop size) and seconds). For more detailed
discussion of atmospheric moisture physics, see [1-4]. At the
other end of the spectrum of representations of clouds is
their representation in large-scale models, for example, in
general circulation or global climate models (GCMs), which
resolve atmospheric features with spatial scales of the order
0f 100 km, and temporal scales of the order of 10 minutes.
Numerical atmospheric and coupled atmospheric-
oceanic-land models, or GCMs, used for climate and



numerical weather predictions, are based on solving time-
dependent 3-D geophysical fluid dynamics equations on the
sphere. The governing equations of these complex models,
based on conservation lows, can be written symbolically as

X D(x) = Py,), 0
where y is a 3-D-prognostic or -dependent variable (e.g.,
temperature, wind, pressure, and moisture); D is model
dynamics (the set of 3-D partial differential equations of
motion, thermodynamics, etc., approximated with a spectral
or grid-point numerical scheme); x is a 3-D-independent
variable (e.g., latitude, longitude, and height); P is model
physics (e.g., long and short-wave atmospheric radiation, tur-
bulence, convection and large-scale precipitation processes,
clouds, interactions with land and ocean processes, etc.) and
chemistry (constituency transport, chemical reactions, etc.).
While scientific problems using these models are among
the most complex and computationally intensive applications
in the history of scientific exploration, the models employ
drastic simplifications in their treatment of many physical
processes important in climate and weather.

Physical and other processes included in model physics,
P, are so complicated that it is practically possible to
include them into GCMs only as 1-D (in the vertical direc-
tion) simplified or parameterized versions (usually called
parameterizations). Thus, the model physics is composed of
parameterizations as P = ) P,. These parameterizations
constitute the right hand side forcing for the model dynamics
equations (1). From the mathematical point of view, each
parameterization can be considered as a mapping, which is
a relationship between two vectors:

Y =P (X), 2)

where X is a vector consisting of profiles of atmospheric
parameters describing the state of the atmosphere at a
particular time at a particular location (a grid point) and Y
is a vector of parameters providing an effective feedback to
the atmosphere from the physical processes described by the
parameterization P, at the same location.

It is noteworthy that, after the very significant simpli-
fications mentioned above and as it is formulated in (2),
a parameterization does not depend on time and location
explicitly. However, throughout model integration it is put
in the environment, which changes in time and space when
the parameterization is applied at different times and different
horizontal locations (grid points) over the globe. The changes
of the environment include temporal changes like diurnal,
annual, other atmospheric and solar cycles, global climate
changes, and spatial changes like the transition of the under-
lying surface from ocean to land and from one climate zone
to another one (e.g., from the tropics to extra tropics). These
internal changes constantly occurring throughout model
integration reflect the actual external changes in the climate
or weather system described by the model. In this paper, we
investigate if our developed NN convection parameterization
demonstrates the practically meaningful temporal and spatial
generalization capability. The generalization capability allows

Advances in Artificial Neural Systems

the NN convection parameterization to adapt to changing
atmospheric states produced throughout climate model sim-
ulations.

A GCM does not resolve multiple subgrid processes that
occur on temporal and spatial scales much finer than the
GCM resolution. However, subgrid processes and scales are
the processes and scales of which physics represents and
is defined on. Because of that both X and Y in (2) have
significant uncertainties and are actually stochastic variables.
X and Y in (2) are defined on a GCM grid, and their
uncertainties are due to and represent the subgrid scale
variability, which is not resolved by GCM.

Thus, the mapping (2), which establishes the relationship
between two stochastic variables X and Y, is a stochastic
mapping, and the parameterization P, is a stochastic param-
eterization. Actually, the stochastic mapping is a family of
mappings, each of which describes a relationship between
two considered stochastic variables X and Y inside a range
determined by the uncertainties of these variables with a
probability determined by a joint probability distribution of
these variables. The stochasticity of model physics parameter-
izations is a natural consequence of the finite model resolu-
tion, which leaves unresolved very important sub-grid scale
processes [5]. Uncertainties of stochastic parameterization
(2) carry important physical information about these sub-
grid (unresolved on a GCM grid) physical processes and
should be properly taken into account in GCMs.

Usually, parameterizations, Py, are formulated using rel-
evant first principles and observational data and are based
on solving deterministic equations (like radiative transfer
equations). They also contain some secondary empirical
components based on traditional statistical techniques like
regression. As the result, for widely used the state-of-the-
art GCMs, all major components of model physics and
chemistry, are based on solving deterministic first principle
physical or chemical equations. Thus, in the process of
development of such a physically based parameterization,
the family of mappings that represents the stochastic param-
eterization (2) is collapsed to one member of the family,
completely neglecting the stochastic nature of the param-
eterization. Therefore, a physically based parameterization
represents only one arbitrarily selected member of the family
of mappings that represents the stochastic parameterization
().

In this study, we develop a stochastic convection parame-
terization based on the learning from data approach, using
a neural network (NN) technique. If sufficient amount of
observations related to atmospheric convection, cloudiness,
and precipitation was available, we could have attempted
to learn the parameterization directly from observations.
Unfortunately, in reality the available observations are sparse
in space and time and not sufficient for such developments.
To alleviate the problem, we use data simulated by models
that explicitly resolve processes at the smaller temporal and
spatial scales; that is, these models have resolution of a couple
of orders of magnitude higher than that of GCMs. These
models are capable of representing and resolving processes
that are relevant to many major features of cloud systems with
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the spatial scales of the order of several kilometers and tem-
poral scales of seconds to minutes. These are so called cloud
resolving models (CRM), which simulate component aspects
and evolution of cloud systems much more realistically than
large-scale models. We employ the CRM [6-8] initialized and
forced by observational data to simulate a limited (but more
expanded, in terms of the spatial and temporal resolution and
the number of variables, than available observational data)
amount of data (they are called “pseudo-observations”). Then
we use a NN technique to develop a stochastic convection
parameterization (2) by learning from the simulated pseudo-
observations.

In our previous works, we successfully applied a NN
technique to develop accurate and fast emulations of complex
physically based parameterizations. Because of the complex-
ity of the physical processes involved and the complexity
of their mathematical and numerical representations, some
of these parameterizations are the most time-consuming
components of GCMs. We have developed NN emulations
for the most time-consuming part of model physics: model
radiation [9-13]. Because, as it was mentioned above, a
physically based parameterization is represented by a single
mapping, we successfully used a single NN to emulate a
physically based parameterization. However, a single NN is
not an adequate tool for emulating a stochastic mapping (2),
which is actually a family of mappings. An adequate tool in
this case is an ensemble of NNs, which can effectively emulate
the stochastic mapping (2) [4].

In this study, we use the CRM developed and pro-
vided by Khairoutdinov and Randall [7]. We also use the
GCM developed by the National Center for Atmospheric
Research (NCAR) that is called the Community Atmospheric
Model (CAM). Thus, in this study we (a) apply a NN
ensemble technique to learn a NN stochastic convection
parameterization from the pseudo-observations simulated
by the CRM, (b) introduce this NN stochastic convection
parameterization into the NCAR CAM, and (c) run climate
simulations to test the validity of the new NN stochastic
convection parameterization. In Section 2, we formulate our
approach and describe details of the training set creation
and NN training. In Section 3, the results of validation of
the developed NN ensemble convection parameterization
are described. Section 4 presents discussion of results and
Section 5 contains conclusions.

2. Formulation of the Approach:
Development of a NN Ensemble Convection
Parameterization from CRM Data

In this study, we develop an ensemble of NNs which emulates
the behavior of fine-scale CRM simulations at larger GCM
scales in a variety of regimes and initial conditions. The result-
ing ensemble NN parameterization can be used as a novel,
and computationally viable convection parameterization in
GCMs. This approach has a realistic potential of producing a
parameterization of a similar or better quality to the existing
physically based parameterizations that are used in GCMs,
effectively taking into account subgrid scale (in terms of

a GCM) effects at a fraction of the computational cost of the
existing approaches.

As we have shown in our previous works (e.g., [12])
any parameterization of model physics (2) can be emulated
employing multilayer perceptron NNs using learning-from-
data approach. This NN is an analytical approximation that
uses a family of functions like

k n
J’q:aq0+zaqj'¢<bjo+zbji'xi>; qg=12,....m,
j=1 i=1
3)

where x; and y, are components of the input and output
vectors X and Y, respectively, a and b are fitting parameters,
and $(b;, + Y bj; - x;) is a “neuron.” The activation function
¢ is usually a hyperbolic tangent, n and m are the numbers
of inputs and outputs, respectively, and k is the number of
neurons in (3). In the case of a stochastic parameterization,
an ensemble of NNs (3) provides an adequate tool for

representing a parameterization (2) [4].

2.1. Design and Development of NN Convection Parameteriza-
tions and Training Sets. Figure 1 summarizes the process of
development of the NN parameterization. The CRM simula-
tions use the TOGA-COARE (the international observational
experiment in the tropics conducted for the 4-month period
from November 1992 to February 1993) observational data for
initialization and forcing and have the horizontal resolution
p of 1km, 64 or 96 vertical layers extending from the surface
to ~30 km, and the time integration step of 5s. We integrate
the CRM over the domain of 256 x 256 km.

The development of the NN parameterization is a multi-
step process. These steps are as follows.

(1) CRM simulated data: the CRM has been run for the 4-
month period (from November 1992 to February 1993
or for 120 days of the TOGA-COARE observational
experiment), and the high 1km resolution output of
the model has been obtained. The CRM-simulated
temperature, wind, humidity, and other data are in
a good agreement with those of the TOGA-COARE
observational data. Also, the CRM produces addi-
tional prognostic and diagnostic fields not observed
in the TOGA-COARE experiment.

(2) Reducing the horizontal resolution of the CRM sim-
ulated data: the CRM-simulated data are averaged in
space and time. The data are averaged to a reduced
horizontal resolution to r where p < r < R, and p
and R are the CRM and GCM resolutions correspond-
ingly. Also the data are interpolated/averaged onto the
number of vertical layers [ = L, where L is the number
of vertical layers in the GCM.

(3) Projecting a CRM space of atmospheric states onto
a GCM space of atmospheric states: the CRM has
many variables that describe fine-scale processes not
resolved by the GCM, for example, the condensed
water in each CRM column. Such variables have no
analogs in the GCM. From the point of view of
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FIGURE 1: Development design of a NN convection parameterization. T, Q, and so forth refer to selected CRM-simulated fields used as inputs
for NN parameterization; Prec., Tendencies, and so forth refer to selected CRM simulated variables used as NN outputs. The dotted and
dashed lines indicate that observational and high-resolution simulated data can be added to the training data set if necessary.

a GCM “model reality” these variables are “hidden”
variables responsible for sub-grid scale variability. The
acknowledgement of this challenge requires develop-
ment of the concept of uncertainty and “stochastic-
ity”; it leads to recognition of a significant level of
uncertainty in the pseudo-observations and of the
stochasticity of the convection parameterization (2)
learned from these data. The obtained set of “pseudo-
observations” implicitly represents a stochastic con-
vection parameterization with an uncertainty, which
is an inherent feature of such a parameterization.
Thus, only the variables that can be identified with the
corresponding GCM variables or can be calculated
from or converted to prognostic or diagnostic vari-
ables available in the GCM are selected to be included
in the development set (called “pseudo-observations”
in Figure 1; actually they are obtained from the aver-
aged CRM simulated data). Only these variables are
used as inputs and outputs of a NN convection param-
eterization. Thus, a subset of variables is selected from
the reduced resolution CRM-simulated data created
at the previous step (2), and this subset constitutes
the NN development set. The dotted and dashed lines
in Figure 1 show that, in principle, if it is found
to be desirable, the high-resolution CRM-simulated
data and/or even observed data can be added to the
development set to enrich subgrid variability in the
development data.

(4) The developed “pseudo-observations” are separated
into two sets, one set being used for training and
another independent set for testing/validation. Then
the NN parameterization is trained using the training
set. Due to the inherent uncertainty of pseudo-
observations, the parameterization represented by
these data is a stochastic parameterization; it should

be considered as a stochastic mapping. Thus, the NN
parameterization is implemented as an ensemble of
NNs.

All the aforementioned issues are discussed in detail in
[4].
The validation procedure for the NN parameterization
consists of two steps. First, the trained NN is applied to the
test set and error statistics are calculated. Second, the tested
NN parameterization is included into the GCM. This last step
is the most important step of validation and of our approach.

2.2. NN Emulation of the Convection Parameterization and
Estimation of Its Uncertainties

2.2.1. Data. The data set simulated for the NN development is
limited by the length of the observational data set needed for
forcing the CRM simulations (see Figure 1). The CRM was
run for 120 days, using the TOGA-COARE forcing for the
256 x 256 km domain with 1km resolution and 96 vertical
layers (0-28 km). Then the simulated data were averaged at
every hour of model integration to produce the simulation
data set with an effective horizontal resolution of 256 km and
26 vertical levels. Finally, only variables that are available in
the GCM (NCAR CAM) or can be calculated there have been
selected. The final data set consists of 2,800 records of hourly
mean data.

The simulation dataset was partitioned into two parts: a
training set consisting of 2,240 records or 80% of data and a
test set consisting of 560 records or 20% of data. Namely, first
the 2,240 records are included in the training set and the last
560 records in the independent test set.

These two data sets have been used for the NN training
and test/validation. As was noticed in the previous section,
these data implicitly represent a stochastic parameterization
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and inherently contain an uncertainty, #, which is not
a useless noise. However, in the process of learning the
NN convection parameterization from pseudo-observations,
from the point of view of a single NN trained using the
data (both components X and Y of the data are stochastic
variables), the situation is similar to the case when the data
contain a significant level of noise.

Symbolically, the NN emulation of the stochastic param-
eterization (2) can be written as

Y=PywX)+n+s (4)

where Py is a NN emulation of the mapping P, (2) and ¢ is
a NN approximation error. Thus, in the case of the stochastic
parameterization, the NN emulation task is different from the
task of emulating a deterministic radiation parameterization
in the GCM [9-11]. For example, in the GCM the radiation
parameterization, which is a closed analytical expression
or a computer code (mapping) is usually considered as an
“exact” source of radiation information (it is not considered
as a stochastic parameterization with an uncertainty); thus,
for the NN emulation approach the goal is to emulate it
as accurate as possible. This can be done because, in this
case, the simulated data can be produced using the given
parameterization (mapping), and considered as accurate data
(with no noise greater than the round off errors).

In the current work, the situation is different. We do not
have an expression (or computer code) for the mapping (2)
that we want to emulate with NN (3). We can only assume
that it exists and, in this case, it is a stochastic mapping, which
is represented by pseudo-observations. Because we derive
pseudo-observation, using a rather complex data processing
described in the previous section, from the data simulated
by the CRM, the pseudo-observations include a significant
level of uncertainty. The uncertainty and stochasticity are
the essential conceptual features of the NN parameterization
that we are going to learn from the pseudo-observations.
In a sense, emulating stochastic parameterization is closer
to the task of learning from noisy empirical data [14]. This
important difference should be taken into account when the
NN approximation is trained, the approximation error statis-
tics are analyzed and interpreted, and the NN architecture is
selected. For example, in the case of training, the usually used
criterion of minimum of the root mean square error should
be substituted by the requirement that the root mean square
error should not exceed the uncertainty # or

1 N 2 2
NZ[YI - Rn(X)]" <7, ©)

i=1

where N is the number of records in the training set.

All NNs that satisfy the condition (5) are valid emulations
of the stochastic parameterization (2). Actually, each of these
NNs can be considered as an emulation of a member of
the family of mappings that together represent the stochas-
tic parameterization (2). Therefore, all NNs satisfying (5)
together—the entire ensemble of NNs—represent the stochastic
parameterization (2). It is clear now that any estimate of
the magnitude of the uncertainty # is important for our

TABLE 1: NN architecture (inputs and outputs) investigated in the
paper.

NN architecture NN inputs NN outputs
In:out T QV QIC Q2 PREC CLD
36:55 18 18 18 18 1 18

T is temperature, QV is atmospheric moisture—vapor mixing ratio, QI1C: the
“apparent heat source,” Q2: the “apparent moist sink,” PREC: precipitation
rates, and CLD: cloudiness. Numbers in the table show the dimensionality of
the corresponding input and output parameters. In : Out stand for NN inputs
and outputs and show their corresponding numbers.

approach. We will attempt to derive such an estimate in the
next sections.

2.2.2. NN Architectures, NN Training, and Validation. Select-
ing an emulating NN architecture includes two different
aspects and types of decisions: (i) the selection of inputs and
outputs and their numbers (n and m in (3)), which, as we have
already mentioned, are determined by the availability of the
variables in the GCM, and (ii) the selection of the number
of hidden neurons (k in (3)) in the emulating NN, which
is determined by many factors (the length of the training
set, the level of uncertainty in the data, the characteristics of
conversions of the training and test errors, etc.).

Table 1 shows (in terms of inputs and outputs) the archi-
tecture we have experimented with here. The major inputs
are the vertical profiles of the following model prognostic
and diagnostic fields: T—a profile of temperature—and QV—
a profile of water vapor concentration. We experimented
also with additional inputs: time, latitude, and longitude
to take into account the changes in the data environment
where the NN is applied; however, because in this particular
case we work with data from a relatively small area and
over a relatively short period of time (120 days), explicit
introduction of the time and location dependencies does not
make any difference and does not complement the indirect
dependence on the time and location introduced by inputs
T and QV. These inputs themselves depend on time and
location. The major outputs for NN architecture shown in
Table 1 are the vertical profiles (or vectors) of the following
model prognostic and diagnostic fields: Q1C (a profile of the
“apparent heat source”), Q2 (a profile of the “apparent moist
sink”), PREC (precipitation rates, a scalar), and CLD (a profile
of cloudiness).

The numbers in Table 1 show how many vertical levels
of the corresponding profile (26 levels maximum as in the
NCAR CAM) have been included as inputs in the NN. Many
profiles have zeros, or constants, or values that are almost
constant (their standard deviations are very small) for the
entire data set at some levels (usually for the upper model
levels in the stratosphere). Zeros and constants should not
be included in inputs or outputs because (1) they carry no
information about input/output functional dependence and
(2) if not removed they introduce additional noise in training.
As for small values that are almost constant, these small
signals may be in some cases not a noise but very important
signals; however, taking into account the level of uncertainty
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FIGURE 2: NN approximation errors on training (blue) and test (red)
sets for Q1C. HID is the number of hidden neurons.

in the problem, information that these small signals may
provide is well below the level of uncertainty and is practically
useless. Moreover, some of these variables were included in
training and no improvement was observed. In general, if
they are important, they should be normalized differently or
weighted.

Next, the number of hidden neurons (HID) has to be
selected. We varied HID, trained a corresponding NN, and
tested it. Figures 2 and 3 show the results of these experiments
for two output parameters, Q1C and PREC.

It is noteworthy that the NN training (a least square min-
imization) attempts to minimize the total (17 + €)%, that is, the
sum of the approximation error and the uncertainty. Because
of very different statistical properties of these components,
they can be considered as independent random variables and
approximately separated as

(n+e) = +€. 6)

Thus, 1 can be roughly estimated using detailed infor-
mation about the training and test statistics. This issue is
discussed in more detail below.

Figures 2 and 3 demonstrate a situation that is usually
observed when NN is trained using data with a significant
level of noise. The training error, after a sharp initial drop,
stays almost constant and then decreases slowly. The test
error, after an initial drop, stabilizes and then increases.
The interpretation of this behavior is well known. After the
initial improvement of the approximation of the data due
to an increasing flexibility of an approximating NN, a short
interval of stability is reached (at HID ~3 to 7) when NN
fits the signal inside the corridor of errors. Then with the
increase of the flexibility of the approximating NN, it starts
fitting the noise; that is, the overfitting occurs. The training
error is slowly decreasing; however, the test error quickly
increases. Table 2 shows the number of fitting parameters
(NN weights) in NNs with different HID, which were used for

Advances in Artificial Neural Systems

10

o]
TTTTTT 77T

Errors

w
—
S
—
v
58]
S

+= Training error
+—+—+ Test error

FIGURE 3: Same as in Figure 2 but for precipitation.

Figures 2 and 3. Taking into account that the training set
contains a limited number of records, 2240 records, it is not
surprising that clearly pronounced overfitting is observed at
HID > 10 when the number of NN weights, N, becomes
comparable with the number of data records.

Thus, we can conclude that, for a particular simulated
data set used, HID = 5 would be an acceptable choice
for the number of hidden neurons in emulating NN. This
value is inside of the intervals of stability of the training and
test errors. Because for different NN outputs the interval of
stability is slightly different, the choice of the optimal number
of hidden neurons is hardly possible. The best solution of
the problem, in our opinion, would be included in the
NN ensemble members with various architectures (different
numbers of hidden neurons and even with different inputs
[4]).

The ensemble of ten NNs has been trained, and error
statistics for seven of them that are significantly different
are presented in Table 3. All NNs presented in Table 3 have
the same number of inputs (36), outputs (55), and hidden
neurons (5). They all have been initialized using the same
initialization procedure [15] with different small random
numbers. The ten different members of NN ensemble cor-
respond to ten different local minima of the error function.
Table 3 shows the comparison of NN ensemble member error
statistics on the training set (Tr) and on the independent test
set (Ts); both sets are described above in Section 2.2.1. For
each NN output variable, three statistics were calculated (bias,
RMSE, and correlation coefficient) by comparison of NN-
generated output variables with the corresponding ones in the
training or test set.

The training errors (Tr) for all output parameters are
significantly closer to each other for different NN ensemble
members and less sensitive to the selection of HID (not
shown in Table 3) inside the interval of stability (see Figures
2 and 3) than the test errors (Ts). Thus, the training errors
can be considered as a rough estimate of the noise in the
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TABLE 2: The number of fitting parameters (NN weights), N, at
different values of HID = k (see (3)).

HID
1 2 5 10 15 20
N¢ 166 273 594 1129 1667 2199

data, which is the inherent uncertainty # of the stochastic
parameterization (2).

Following this assumption, we can approximately esti-
mate the uncertainty 7. For example, for QIC the average
training RMS error (calculated using Table 3) is about
2.4 K/day, which can be attributed to the uncertainty #. This
estimate for the uncertainty for one of the model variable,
which is introduced by taking into account sub-grid scale
effects, is an important result per se. The quantitative infor-
mation about the uncertainty is instrumental in evaluating
the accuracy of the model forecast. Now, using (6) for the
test error we can estimate the NN approximation error. For
this example, the test error is 2.9 K/day and, following (6),
only about 1.6 K/day of this error should be attributed to the
NN approximation error. If we perform such a correction for
all NN ensemble members presented in Table 3, we find out
that, as in the aforementioned example, after the separation of
the uncertainty (the training error), the NN approximation
errors on the test set do not exceed (often they are smaller
than) the uncertainty.

Figures 4, 5, and 6 illustrate performance of different
members of the NN ensemble on the independent test set.
Figure 4 demonstrates predictions of precipitation time series
produced by different NN ensemble members in comparison
with “pseudo-observations” (or “Data” in the figure legend).
The NN ensemble members produce an envelope (with a
rather measurable spread) which on average gives a very good
prediction of precipitation on the test set. The spread of the
envelope shows that there is still a measurable difference
between NN ensemble members, and some of the members
of the envelope (e.g., {9}) give results that are closer to the
“pseudo-observations” The magnitude of the spread may
serve as another measure of the uncertainty of the stochastic
parameterization (2). It is in agreement with the measure we
introduced above, with the magnitude of the training error
for PREC shown in Table 3.

Figure 5 depicts mean profiles for one of the outputs of the
NN parameterization, Q1C. As in the case of precipitation,
different members of the NN ensemble create an envelope
with a significant spread for the mean profiles, and the
magnitude of the spread is close to the training error for QIC
shown in Table 3. The differences between members inside
the envelope are small as compared with the uncertainty;
however, these differences are significant. They give estimates
of the differences between members of the family of mappings
representing the stochastic parameterization (2) and implic-
itly available in pseudo-observations.

Figure 6 shows the Hovmoller diagrams (the time evo-
lution of vertical profiles) for the time series of cloudiness
(CLD) profiles for the NN ensemble mean as compared
with the verification data. The upper panel shows the time

FIGURE 4: NN simulations of precipitation on the test set. Different
curves presented in the figure represent seven significantly different
members of the NN ensemble (see the numbers in parentheses) and
verification data. The NN ensemble member {9} is shown by the
thick-dashed red line.
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F1GURE 5: QIC (the apparent heat source from convection) mean
profiles on the test set produced by different NN ensemble members.
The different curves presented in the figure correspond to different
ensemble members; the thick solid line shows the verification data
in the test set.

series of the pseudo-observation profiles, and the lower
panel shows the time series of the profiles generated by NN
ensemble. Each profile in the lower panel is the average of
ten profiles generated by ten NN ensemble members. The
patterns generated by the NN ensemble are a bit smoothed
and diffused; they are not as sharp as the observed ones but
are well recognizable. The NN ensemble mean represents the
sequence of patterns well and without significant shifts.

As mentioned above, the NN errors on the raining set
as well as the spread of the envelope created by different
NN ensemble members represent the level of uncertainty in
pseudo-observation data or the uncertainty of the stochas-
tic parameterization (2). It means that, in the context of
the current application (development of NN emulation for
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TABLE 3: NN ensemble member error statistics on training (Tr) and independent test (Ts) sets. CC is the correlation coefficient. HID = 5.

NN outputs

Dataset Ens. mem. QIC (K/day) Q2 (K/day) Prec (mm/day) CLD (fractions)
Bias RMSE CC Bias RMSE CC Bias RMSE CC Bias RMSE CC
2 1-107° 2.8 075 2-107° 4.0 063 1-107 6.0 085 1-107* 0.07 0.91
3 2-107° 2.4 078 2-107* 3.7 066 1-1072 5.7 086 2-107° 0.07 092
4 1-107° 23 081 2-107° 3.7 068 4-107° 5.2 089 1-100* 007 092
Tr 5 2.107° 2.3 0.80 1-107° 3.8 0.66 2-107° 5.3 088 3-107° 0.07 0.91
6 4.107* 2.3 0.80 1-107° 3.8 064 1-107° 5.3 088 6-107° 0.08 0.89
7 2-107* 2.3 081 3-107* 3.7 0.67 7-107° 5.2 089 5-107° 0.06 0.93
9 1-107° 3.1 073 4-107° 4.0 0.64 2-1072 5.8 086 1-100* 007  0.90
2 -0.1 3.5 0.62 0.02 47 0.49 -11 8.5 0.68 0.03 0.11 0.81
3 -0.6 3.5 0.62 -0.8 5.0 0.44 -5.1 10.6 0.66 0.01 0.11 0.81
4 -0.5 3.0 0.70 -0.6 45 0.53 -4.0 8.8 0.73 0.00 0.09  0.86
Ts 5 -0.1 2.9 0.71 -0.1 3.9 0.52 -1.8 78 0.74 0.01 0.08  0.87
6 -0.3 2.9 0.70 -0.1 3.9 0.51 -2.6 8.0 0.74 0.01 0.08  0.88
7 0.4 2.9 0.73 -0.5 43 0.58 -33 79 0.77 0.00 0.07 092
9 -0.7 3.8 0.65 -0.8 47 0.51 41 8.6 0.76 0.01 0.10 0.84

Cloud fraction

Cloud fraction

200

300 400 500

FIGURE 6: Hovmoller diagrams (the time evolution of vertical
profiles) for the CLD profile time series: pseudo-observations, the
upper panel and the NN ensemble mean, the lower panel. The x-
axis shows time in hours for the test/validation set.

a stochastic convection parameterization (2)), selecting the
best single emulating NN followed by the use of this “optimal”
NN parameterization in the GCM is not the best approach.

All NNs presented here (as well as other NNs, for
example, with different architectures, different number of
neurons in the hidden layer evaluated in [4]) can be consid-
ered as valid emulations of the parameterization (2). These
NNs should be considered as members of a NN ensemble
realization of the stochastic parameterization (2) represented
by a particular data set. The spread in the NN ensemble
roughly reflects the skill (error) of the prediction that could
be obtained using this NN ensemble.

3. Validation of the Stochastic NN Convection
Parameterization in NCAR CAM

We consider the results presented in this section mostly
as a proof of concept for our NN approach to developing
NN convection parameterizations. Keeping this in mind, we
present the results from the standpoint of their general quality
with a clear understanding that more precise quantitative
climatological results could be expected in our future efforts.

The NN stochastic convection parameterization de-
scribed in the previous sections has been implemented as the
ensemble of NNs, which are trained on the averaged CRM
simulated data “pseudo-observations” In this section, we dis-
cuss the results of introduction of the NN stochastic param-
eterization into the NCAR CAM. Here our goal is to verify
whether the NN ensemble, emulating the stochastic con-
vection parameterization (2), provides meaningful/realistic
outputs when using the CAM inputs. We performed the
validation of our NN parameterization in the following two
experiments.

(1) Over the TOGA-COARE location, the grid point (-2°
S, 155" E) for the time period for which the TOGA-
COARE data are available (the TOGA-COARE 4-
month period from November 1992 to February 1993)
we produced the grid-point time-mean profiles and
time series.

(2) Over the large tropical Pacific region (with the area
size of 120° x 30° and the following coordinates:
150°E < lon < 90° W; 15° S < lat < 15° N), we
performed the parallel runs with the standard CAM
and with the diagnostic CAM-NN run (see below)
for the decadal (1990-2001) boreal winters, from
November to February or NDJF, climate simulations.
Throughout the CAM-NN run we applied at each grid
point and at every time step the aforementioned ten
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NN ensemble members and calculated the ensemble
mean for each NN output (Q1C, Q2, and CLD profiles,
and for PREC).

Note that the parallel decadal climate simulations have
been actually performed for 11 years, but the decadal means
(actually 11 boreal winters or NDJF) used below for validation
have not included the TOGA-COARE period (see above).
The TOGA-COARE data for the 4-month period from
November 1992 to February 1993 were used for initializing
and forcing CRM simulations, that is, for creating simulated
data, which was converted into pseudo-observations used for
the NN ensemble training. The validation of the parallel runs
has been done for the independent decade.

For simple/initial testing and validation of the NN
stochastic convection parameterization (2) in the CAM, we
introduced a diagnostic mode of integration. For the diagnos-
tic mode of integration, at every time step, the NN convection
parameterization is applied, all ten NN ensemble members
are evaluated, and averages of their outputs are calculated and
used as NN ensemble convection parameterization outputs.
Hereafter this diagnostic run is called CAM-NN. These
outputs have been accumulated and the averaged fields
have been calculated and compared with those produced by
the original CAM convection parameterization and NCEP
reanalysis data [16, 17], which provides verification data for
climate simulations. Note that reanalysis data (an integrated
set of global observations) is produced (every 10 years or
s0) using a data assimilation system (DAS) which employs
a GCM and observational data for past several decades,
for example, from 1948 to 2010. A DAS is a complicated
procedure, which involves nonlinear optimization in the
space of very high dimensionality, combining or blending
observational data with the GCM simulations to produce the
best possible estimates of atmospheric states for a reanalysis
period.

3.1 Validation of the NN Convection Parameterization Using
the NCAR CAM for the TOGA-COARE Location and 4-
Month Period from November 1992 to February 1993. At
the first step of our validation, the outputs generated by
the ensemble of ten NNs have been compared with CAM-
simulated data for one grid point at the TOGA-COARE
location (-2° S, 155° E) during the TOGA-COARE period,
from November 1992 to February 1993. Thus, the CAM-
simulated data were collocated in space and time with the
averaged CRM simulated data.

We used the CAM-simulated T and QV as inputs for
the NN ensemble trained on the averaged CRM-simulated
data (pseudo-observations). The major NN outputs (CLD
and PREC) obtained in this experiment have been compared
with CAM CLD and PREC and with pseudo-observations.
Figure 7 shows mean CLD profiles for the aforementioned
experiment. The CAM-NN profile deviates from the pseudo-
observation profile because the NN ensemble has been
trained for pseudo-observation inputs, not for the CAM ones.
It is also different from the CAM profile, which suggests that
our stochastic NN convection parameterization effectively
introduces in the CAM-NN run the convection and cloud
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FIGURE 7: Three different mean cloud (CLD) profiles for the TOGA-
COARE period: CAM-NN (thick solid), pseudo-observations
(dashed), and CAM (solid).
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FIGURE 8: Precipitation (PREC, in mm/day) time series: CAM (black
solid) and CAM-NN (or NCAM) ensemble mean (red dashed).

physics, which is different from that of introduced in the
parallel CAM run employing an existing CAM convection
parameterization.

Figure 8 shows the precipitation (PREC) time series
produced by the original CAM run and the CAM-NN
run using the NN ensemble mean. The scope, mean, and
frequencies of the time series are quite similar for both
models and look reasonable. Table 4 shows the bulk statistics
for CLD and PREC variables for the CAM, CAM-NN runs
and for pseudo-observations. Like in Figure 7 the statistics for
the CAM-NN run are in between those of the CAM run and
pseudo-observations; they are very reasonable and physically
meaningful.

Let us stress that we should not expect full similarity here
between CAM-NN and CAM statistics, profiles, and time
series. The CAM-NN results are generated by our NN con-
vection parameterization learned from CRM cloud physics,
which is different from the cloud physics implemented cur-
rently in the CAM. Full similarity of the CAM and CAM-NN
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TABLE 4: Bulk statistics for CLD and PREC outputs for CAM, CAM-
NN, and pseudo-observations (PO).

Mean  Standard deviation =~ Min = Max
PREC in mm/day
PO 9.22 11.24 0. 80.8
CAM-NN 8.50 8.14 0. 63.6
CAM 6.41 723 0. 43.5
CLD in fraction
PO 0.072 0.154 0. 1.00
CAM-NN 0.104 0.240 0. 1.00
CAM 0.159 0.256 0. 1.00

results would mean that our NN convection parameterization
is not different form the convection parameterization used
in the CAM and has no value in terms of introducing new
physics in the CAM. Even in this case, it may still be valuable
in terms of higher computational performance providing also
a possibility of using NN ensembles.

3.2. Evaluating the NN Convection Parameterization Gener-
alization Ability in Parallel Decadal Climate Simulations for
a Large Tropical Pacific Region. Encouraged by the afore-
mentioned success of our NN parameterization in the CAM-
NN, we extended our diagnostic tests beyond the TOGA-
COARE location and beyond the time interval covered by
the CRM simulated data to test the NN parameterization
generalization ability and its ability to adapt to the changing
data environment. Namely, we performed the parallel decadal
CAM and CAM-NN simulations and analyzed their results
over a large tropical Pacific region.

We would like to emphasize that the NN convection
parameterization has been developed for the TOGA-COARE
location, which is represented by just one grid point in the
CAM and which is actually a small area in the Equatorial
Pacific (marked by a star in the middle panel of Figure 11).
Also the TOGA-COARE data have been produced only over
a short 4-month period (from November 1992 to February
1993 or NDJF). To evaluate the NN convection parameteri-
zation generalization and adaptive ability, we applied the NN
ensemble convection parameterization in the CAM-NN run
for the entire large tropical Pacific region (with the area size
0f 120° x 30° and the following coordinates: 150° E < lon < 90°
W; 15° S < lat < 15° N) during the decadal (1990-2001, with
the TOGA-COARE 4-month period from November 1992 to
February 1993 excluded) run. This is a very hard test for the
generalization and adaptive ability of the NNs trained over a
single location and a short 4-month period.

As described above, the developed NN convection
parameterization has been introduced into the CAM-NN and
run in the aforementioned diagnostic mode, for which CAM
inputs have been used for calculating NN convection outputs.
Below we compare the parallel decadal CAM-NN and CAM
simulations and validate them against the NCEP reanalysis.
Because NN convection was trained using simulated data
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FIGURE 9: Vertical profiles of decadal boreal winter mean CLD for
the TOGA-COARE location, in fractions, for the CAM-NN (open
circles) and CAM (full circles) runs. Atmospheric pressure in hPa is
the vertical coordinate.
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F1GURE 10: Time series of decadal boreal winter mean total cloudi-
ness (CLD, in fractions) for the TOGA-COARE location for the
CAM (black) and CAM-NN (green) runs, and for the NCEP
reanalysis (yellow). Numbers in the figure show the mean values for
the time series.

for the TOGA-COARE 4-month period (November 1992-
February1993), below we will analyze the decadal simulations
for 4-month boreal winter seasons only.

The results of these decadal parallel climate simulations
for the tropical Pacific region for decadal means of boreal
winter (NDJF) distributions for total cloudiness (CLD) are
shown in Figures 9, 10, and 11.

The decadal mean CLD profiles for the TOGA-COARE
location for the CAM-NN and CAM runs shown in Figure 9



Advances in Artificial Neural Systems

1

1 CAM ..

15S T T T T T T T T T
s 8 g8 8 = = s £ 2 EZ

n ) = — o =] =] =] IS o

— — — = ) < I50) Q —

— — — — — —

I90W

lOOW"“"""""""

FIGURE 11: Decadal boreal winter mean cloudiness (CLD, in fractions) distribution for the CAM (upper panel) and CAM-NN (middle panel)
runs over tropical Pacific region (with the area size of 120° x 30" and the following coordinates: 150 E < lon < 90° W shown with the 10°
interval; 15° S <lat < 15° N shown with the 3° interval). The lower panel shows the corresponding NCEP reanalysis decadal mean distribution.
The TOGA-COARE location, for which the pseudo-observations were generated and the NN ensemble was trained, is shown by a star in the

middle panel. The contour interval is 0.05°C.

are close to each other. Note that the decadal mean profiles are
consistent with those shown for the CAM-NN and CAM runs
in Figure 7 for the TOGA-COARE period. When comparing
these two figures, the difference in the vertical coordinates
should be taken into account. In Figure 7 the model vertical
level number is used as the vertical coordinate, whereas
in Figure 9 the atmospheric pressure in hPa is used. The
conversion from one coordinate to another one is essentially
nonlinear. The pressure of about 200 hPa corresponds to the
vertical level number 13.

The frequencies and magnitudes of the decadal mean
CLD time series for the CAM and CAM-NN runs presented
in Figure 10 are similar and consistent. The time series for
the CAM run show measurably higher magnitudes, with the
mean of 0.78, compared to those of the time series for the
CAM-NN run, with the mean of 0.61. The time series of the
NCEP reanalysis show lower magnitudes, with the mean of
0.54, which are significantly closer to those of the time series
for CAM-NN. Note that the CLD results presented in Figure 6
have shown a close agreement of the CRM-simulated (and
grid-box averaged) data and the NN ensemble mean, at the
TOGA-COARE location. In our view, the improvement of the
CLD time series for the decadal CAM-NN run for a large
tropical region can be attributed to both a good quality of
the CRM-simulated data, which implicitly represent a better

CRM cloud physics, and the positive impact from using the
NN ensemble.

The horizontal distribution of total cloudiness for the
large tropical Pacific Ocean region for the CAM-NN run
versus the CAM control run and the NCEP reanalysis (Fig-
ure 11) have been produced and analyzed. For the region, the
precipitation and cloudiness patterns for the parallel decadal
CAM-NN and CAM simulations have been qualitatively and
quantitatively compared.

The major result is that the regional CLD distributions
for the decadal parallel runs presented in Figure 11 show a
consistency and similarity, in terms of both the pattern and
especially the magnitude, between the CAM-NN and CAM
runs and, to some extent, with the NCEP reanalysis [17] used
for validation. However, both the CAM and CAM-NN run
patterns show some noticeable deviations from the NCEP
reanalysis pattern. This is definitely the subject for the future
improvements (see the future work outlined in Sections 4 and
5).

The CLD magnitudes for the CAM-NN run (Figure 11)
are mostly closer to those of the NCEP reanalysis than the
CLD magnitudes of the CAM run. However, such a positive
feature should be mentioned cautiously because this is just
an initial result. It is noteworthy that the CLD decadal
time series for the TOGA-COARE location (Figure 10) and
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the CLD distribution for the tropical Pacific Ocean (Figure 11)
are consistent in the sense that for both characteristics the
CAM run shows measurably higher magnitudes compared to
those of the CAM-NN run, the latter being closer to those of
the NCEP reanalysis.

Similar results have been obtained for the decadal boreal
winter precipitation distribution over the tropical Pacific
Ocean region (see [4]).

4. Discussion

At this initial stage of our development of the stochastic
NN convection parameterizations, which is mostly the proof
of concept, it seems reasonable to compare the CAM and
CAM-NN runs mostly in terms of their general consistency
between themselves and with the NCEP reanalysis. A detailed
climatological analysis of regional and global simulations for
all seasons will be done at the next stage of our development.
It will be based on using extended more representative CRM
simulations with broader spatial and temporal coverage for
developing stochastic NN convection parameterizations for
the CAM, which could be applied globally and for all seasons.

The CAM-NN results are generated by our NN con-
vection parameterization learned from CRM cloud physics,
which is different from the cloud physics currently imple-
mented in the CAM convection parameterization. The CAM
and CAM-NN results are consistent and quite similar, with
some differences discussed above.

In our view, the results presented above in Sections 2
and 3 demonstrate a realistic potential of the presented NN
ensemble approach for developing stochastic NN convection
parameterizations. Our first attempt in this direction led to
meaningful results despite the fact that for our development
we used for the NN training a limited amount of data available
over a small area in the tropical Pacific Ocean (the TOGA-
COARE site) and during only four month (the TOGA-
COARE period from November 1992 to February 1993).
We obtained physically meaningful results not only over
this particular location and time interval, but our decadal
climate simulation for cloudiness and precipitations over this
location and over the extended large tropical Pacific Ocean
region look meaningful even without introduction in NNs
an explicit time and location dependencies. These results
demonstrate: (1) a very good generalization ability of the NN
ensemble in this application and (2) a good ability of the
NN ensemble to adapt to a changing data environment using
implicit dependencies of NN inputs on time and location
without introducing these dependencies explicitly.

These two issues are extremely important for future
development of this approach. Our final goal is to develop a
global NN convection parameterization, which can be used
in the CAM and other global GCMs. To achieve this goal,
a representative global data set of pseudo-observations is
required. However, data for initialization and forcing CRM
are available only over a few sites (TOGA-COARE, ARM,
etc.); thus, CRM simulations initialized and driven by a
limited amount of observations are not representative in
terms of different global geographical locations and differ-
ent weather conditions. Hopefully, the aforementioned data
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could be augmented by data simulated by the CRM, which is
initialized and driven not only by observations but also by
GCM-simulated data. In principle, the CRM could be run
in such a way at each GCM grid point for a long period
of time and supply a representative global set of pseudo-
observations. However, since the CRM runs are very time
consuming, this scenario is not practically feasible. In this
context, good generalization and adaptation abilities of the
stochastic NN convection parameterization demonstrated
in this study become crucial; they will hopefully allow us
to reduce the number of locations for generating pseudo-
observations to a manageable and computationally affordable
number of grid points.

It is noteworthy that the NN ensemble convection
parameterization is very fast, contrary to any alternative
approaches that have been developed to introduce new cloud
and convective physics in GCMs (see [4], for details). These
alternative approaches are very time consuming and barely
affordable for climate simulations and weather prediction.

5. Conclusions

In this paper we introduce a novel approach to development
of NN convection parameterizations based on applying the
NN ensemble technique. This approach has been concep-
tually formulated and developed. Several very important
notions are introduced which constitute the conceptual
skeleton of the approach:

(1) pseudo-observations which are the result of averaging
and projecting of high-dimensional and high-res-
olution CRM-simulated data. The pseudo-obser-
vations contain the uncertainty which is a result of
averaging and projection of the original CRM simu-
lated data,

(2) stochastic mapping/parameterization that is implic-
itly defined by pseudo-observations with uncertain-
ties,

(3) NN ensemble emulation that is an adequate tool for
emulating stochastic mappings/parameterizations,

(4) adaptation to temporal and spatial change in the
environment, in which the NN ensemble parameter-
ization performs through implicit time and location
dependencies of NN inputs.

Our future plans include the following:

(1) running CRM simulations initialized and forced by
GCM-simulated data and by reanalysis data to gen-
erate a more representative data set that will include
a broader range of convection regimes, longer time
periods, more locations, and more diverse weather
conditions,

(2) using the representative global data set produced in
this way to train a global NN convection parameteri-
zation,

(3) testing the NN convection parameterization trained
using these new data in the CAM in diagnostic and
prognostic modes,
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(4) introducing tools allowing the NN parameteriza-
tion to adapt to changes in the environment by:
(1) using time and location as additional inputs in
the NN parameterization and (2) using dynamically
adjustable NN parameterization based on approaches
developed in [18]. The approaches use various proce-
dures to recognize new atmospheric states emerged
due to the changes in the environment. These states
are used for an online adjustment of the NN parame-
ters.
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