314 research outputs found

    Axisymmetric equilibria of a gravitating plasma with incompressible flows

    Get PDF
    It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric gravitating magnetically confined plasma with incompressible flows is governed by a second-order elliptic differential equation for the poloidal magnetic flux function containing five flux functions coupled with a Poisson equation for the gravitation potential, and an algebraic relation for the pressure. This set of equations is amenable to analytic solutions. As an application, the magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev. Lett. {\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal currents, subject to gravitating forces from a massive body (a star or black hole) and inertial forces due to incompressible sheared flows. Explicit solutions are obtained in two regimes: (a) in the low-energy regime β0≈γ0≈δ0≈ϵ0≪1\beta_0\approx \gamma_0\approx \delta_0 \approx\epsilon_0\ll 1, where β0\beta_0, γ0\gamma_0, δ0\delta_0, and ϵ0\epsilon_0 are related to the thermal, poloidal-current, flow and gravitating energies normalized to the poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime β0≈γ0≈δ0≈ϵ0≫1\beta_0\approx \gamma_0\approx \delta_0 \approx\epsilon_0\gg 1. It turns out that in the high-energy regime all four forces, pressure-gradient, toroidal-magnetic-field, inertial, and gravitating contribute equally to the formation of magnetic surfaces very extended and localized about the symmetry plane such that the resulting equilibria resemble the accretion disks in astrophysics.Comment: 12 pages, latex, to be published in Geophys. Astrophys. Fluid Dynamic

    Enhanced longitudinal mode spacing in blue-violet InGaN semiconductor laser

    Full text link
    A novel explanation of observed enhanced longitudinal mode spacing in InGaN semiconductor lasers has been proposed. It has been demonstrated that e-h plasma oscillations, which can exist in the laser active layer at certain driving conditions, are responsible for mode clustering effect. The resonant excitation of the plasma oscillations occurs due to longitudinal mode beating. The separation of mode clusters is typically by an order of magnitude larger that the individual mode spacing.Comment: 3 pages, 2 figure

    Resonant electron transfer between quantum dots

    Full text link
    An interaction of electromagnetic field with a nanostructure composed of two quantum dots is studied theoretically. An effect of a resonant electron transfer between the localized low-lying states of quantum dots is predicted. A necessary condition for such an effect is the existence of an excited bound state whose energy lies close to the top of the barrier separating the quantum dots. This effect may be used to realize the reversible quantum logic gate NOT if the superposition of electron states in different quantum dots is viewed as the superposition of bits 0 and 1.Comment: 8 pages, 1 EPS-figure, submitted to Phys. Rev.

    Scattering of a proton with the Li4 cluster: non-adiabatic molecular dynamics description based on time-dependent density-functional theory

    Full text link
    We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behaviour of a proton with the Li4_4 cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.Comment: 18 pages, 4 figure

    Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems

    Full text link
    A general electrodynamic theory of a grating coupled two dimensional electron system (2DES) is developed. The 2DES is treated quantum mechanically, the grating is considered as a periodic system of thin metal strips or as an array of quantum wires, and the interaction of collective (plasma) excitations in the system with electromagnetic field is treated within the classical electrodynamics. It is assumed that a dc current flows in the 2DES. We consider a propagation of an electromagnetic wave through the structure, and obtain analytic dependencies of the transmission, reflection, absorption and emission coefficients on the frequency of light, drift velocity of 2D electrons, and other physical and geometrical parameters of the system. If the drift velocity of 2D electrons exceeds a threshold value, a current-driven plasma instability is developed in the system, and an incident far infrared radiation is amplified. We show that in the structure with a quantum wire grating the threshold velocity of the amplification can be essentially reduced, as compared to the commonly employed metal grating, down to experimentally achievable values. Physically this is due to a considerable enhancement of the grating coupler efficiency because of the resonant interaction of plasma modes in the 2DES and in the grating. We show that tunable far infrared emitters, amplifiers and generators can thus be created at realistic parameters of modern semiconductor heterostructures.Comment: 28 pages, 15 figures, submitted to Phys. Rev.
    • …
    corecore