62 research outputs found

    Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    Get PDF
    The power spectral density (PSD) of any time-dependent stochastic processXt is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of Xt over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT  ¥.Alegitimate question iswhat information on the PSDcan be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes thePSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensionalBrownian motion (BM) we calculate the probability density function of a single-trajectory PSDfor arbitrary frequency f, finite observation timeTand arbitrary number k of projections of the trajectory on different axes.We show analytically that the scaling exponent for the frequency-dependence of the PSDspecific to an ensemble ofBMtrajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail.Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncatedWiener representation ofBM, and the case of a discrete-time lattice randomwalk.Wehighlight some differences in the behavior of a single-trajectory PSDforBMand for the two latter situations.The framework developed herein will allow formeaningful physical analysis of experimental stochastic trajectories

    1/f noise for intermittent quantum dots exhibits non-stationarity and critical exponents

    Full text link
    The power spectrum of quantum dot fluorescence exhibits 1/fβ1/f^\beta noise, related to the intermittency of these nanosystems. As in other systems exhibiting 1/f1/f noise, this power spectrum is not integrable at low frequencies, which appears to imply infinite total power. We report measurements of individual quantum dots that address this long-standing paradox. We find that the level of 1/fβ1/f^\beta noise decays with the observation time. The change of the spectrum with time places a bound on the total power. These observations are in stark contrast with most measurements of noise in macroscopic systems which do not exhibit any evidence for non-stationarity. We show that the traditional description of the power spectrum with a single exponent β\beta is incomplete and three additional critical exponents characterize the dependence on experimental time.Comment: 16 pages, 4 figure

    Modelling intermittent anomalous diffusion with switching fractional Brownian motion

    Full text link
    The stochastic trajectories of molecules in living cells, as well as the dynamics in many other complex systems, often exhibit memory in their path over long periods of time. In addition, these systems can show dynamic heterogeneities due to which the motion changes along the trajectories. Such effects manifest themselves as spatiotemporal correlations. Despite the broad occurrence of heterogeneous complex systems in nature, their analysis is still quite poorly understood and tools to model them are largely missing. We contribute to tackling this problem by employing an integral representation of Mandelbrot's fractional Brownian motion that is compliant with varying motion parameters while maintaining long memory. Two types of switching fractional Brownian motion are analysed, with transitions arising from a Markovian stochastic process and scale-free intermittent processes. We obtain simple formulas for classical statistics of the processes, namely the mean squared displacement and the power spectral density. Further, a method to identify switching fractional Brownian motion based on the distribution of displacements is described. A validation of the model is given for experimental measurements of the motion of quantum dots in the cytoplasm of live mammalian cells that were obtained by single-particle tracking
    corecore