16 research outputs found

    Tri-, tetra- and heptacyclic perylene analogues as new potential antineoplastic agents based on DNA telomerase inhibition

    No full text
    A recent approach in anticancer chemotherapy envisages telomerase as a potentially useful target. An attractive strategy deals with the development of compounds able to stabilize telomeric DNA in the G-quadruplex folded structure and, among them, a prominent position is found in the perylenes. With the aim to further investigate the role of drug structure, in view of possible pharmaceutical applications, we synthesized a series of compounds related to PIPER, a well-known perylene-based telomerase inhibitor. We modified the number of condensed aromatic rings and introduced different side chains to modulate drug protonation state and extent of self-aggregation. Effective telomerase inhibition was induced by heptacyclic analogues only, some showing a remarkably wide selectivity index with reference to inhibition of Taq polymerase. G-quadruplex stabilization was monitored by circular dichroism and melting experiments. Cell cytotoxicity measurements indicated a poor short-term cell killing ability for the best G-quartet binders. Besides the presence of a planar seven-condensed ring system, the introduction of a cyclic amine in the side chains critically affects the selectivity window

    Antiproliferative and antibacterial activity of some glutarimide derivatives

    No full text
    Antiproliferative and antibacterial activities of nine glutarimide derivatives (1–9) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50 = 9–27 μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 6–8 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625 mg/mL; 1.97 × 10−3 mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields
    corecore