70 research outputs found

    Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency

    Get PDF
    This Extension Circular describes various irrigation efficiency, crop water use efficiency, and irrigation uniformity evaluation terms that are relevant to irrigation systems and management practices currently used in Nebraska, in other states, and around the world. The definitions and equations described can be used by crop consultants, irrigation district personnel, and university, state, and federal agency personnel to evaluate how efficiently irrigation water is applied and/or used by the crop, and can help to promote better or improved use of water resources in agriculture. As available water resources become scarcer, more emphasis is given to efficient use of irrigation water for maximum economic return and water resources sustainability. This requires appropriate methods of measuring and evaluating how effectively water extracted from a water source is used to produce crop yield. Inadequate irrigation application results in crop water stress and yield reduction. Excess irrigation application can result in pollution of water sources due to the loss of plant nutrients through leaching, runoff, and soil erosion

    Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency

    Get PDF
    This Extension Circular describes various irrigation efficiency, crop water use efficiency, and irrigation uniformity evaluation terms that are relevant to irrigation systems and management practices currently used in Nebraska, in other states, and around the world. The definitions and equations described can be used by crop consultants, irrigation district personnel, and university, state, and federal agency personnel to evaluate how efficiently irrigation water is applied and/or used by the crop, and can help to promote better or improved use of water resources in agriculture. As available water resources become scarcer, more emphasis is given to efficient use of irrigation water for maximum economic return and water resources sustainability. This requires appropriate methods of measuring and evaluating how effectively water extracted from a water source is used to produce crop yield. Inadequate irrigation application results in crop water stress and yield reduction. Excess irrigation application can result in pollution of water sources due to the loss of plant nutrients through leaching, runoff, and soil erosion

    Proceedings of the 23rd annual Central Plains irrigation conference

    Get PDF
    Presented at Proceedings of the 23rd annual Central Plains irrigation conference held in Burlington, Colorado on February 22-23, 2011

    Proceedings of the 21st annual Central Plains irrigation conference, Colby Kansas, February 24-25, 2009

    Get PDF
    Presented at the 21st annual Central Plains irrigation conference on February 24-25, 2009 in Colby, Kansas

    Pumping Plant Performance

    Get PDF
    Irrigation accounts for a large portion of the energy used in Nebraska agriculture. This paper describes a method to estimate the cost of pumping water and compares the amount of energy used by a properly designed and well-maintained pumping plant, represented by the Nebraska Pumping Plant Performance Criteria (NPPPC). The results can help determine the feasibility of repairing the pumping plant. Methods to compare energy sources are also presented. We recommend that you periodically arrange with a well drilling company to test the efficiency of your pump. Worksheets for pumping plant performance are included in the appendix

    EC00-2540 Field Records for Restricted Use Pesticide Applications and Integrated Crop Management by Private Applicators

    Get PDF
    Private applicators must record their restricted use pesticide (RUP) applications, as required by the Food, Agriculture, Conservation and Trade (FACT) Act of 1990. The USDA Agricultural Marketing Service administers this activity. In Nebraska, RUP application records must be maintained for three years from the date of application. The certified pesticide applicator should retain these RUP records, but must be able to make them accessible for copying by authorized representatives. This booklet is a suggested guide for preliminary or final RUP application records

    Effect of Composting on the Fate of Steroids in Beef Cattle Manure

    Get PDF
    In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary detected as estrone), androgens, progesterone, and the fusarium metabolite and implant a-zearalanol was monitored in manure compost piles. First-order decay rates were calculated for steroid half-lives in compost and ranged from 8 d for androsterone to 69 d for 4-androstenedione. Other steroid concentration data could not be fit to first-order decay models, which may indicate that microbial processes may result in steroid production or synthesis in composting systems. We demonstrate that composting is an effective strategy to remove steroid hormones from manure. Total steroid hormone removal in composted beef cattle manure ranged from 79 to 87%

    Effect of rainfall timing and tillage on the transport of steroidhormones in runoff from manure amended row crop fields

    Get PDF
    Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30 days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8–86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17 _estradiol, estrone, estriol, testosterone, and _zearalenol at concentrations ranging up to 100–200 ng L−1. Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall
    • …
    corecore