84 research outputs found
Perception Of Cultural Competence in Nurse Practitioners
Purpose: Nurse practitioners are at the forefront in providing quality care to diverse populations and must become cognizant of the importance of cultural competence in caring for diverse patients. The purpose of this study was to examine perceptions of cultural competence and its integration in the delivery of health care in nurse practitioners practicing in a Mexican-American region of South Texas.
Methodology: A descriptive, qualitative design using grounded theory and purposive sampling was utilized for this study. Sixteen nurse practitioners, fourteen females and two males, participated in the study. Qualitative data collection was elicited through individual interviews and a focus group. The selected participants included nurse practitioners who were employed for at least eight hours per week in a primary or acute care setting. The study included a demographic questionnaire and a nine-item interview guide created by the researchers to elicit thoughtful reflection on the participants’ perceptions of cultural competence and how cultural competence is integrated in their practice.
Main findings: Data analysis involved grouping of response similarities until no new categories emerged. Affinity among the categories resulted in linkage into four distinct core categories or emerging themes. These themes provided a summary of what the nurse practitioners working with a Mexican-American population perceived as cultural competence and its integration in the delivery of health care. The four emerging themes include: 1) Culture as multifaceted; 2) Communication as empowerment; 3) Cultural dissonance; 4) Influence of myths, traditions, and complementary modalities.
Principle conclusions: The study findings highlight the importance of advanced practice nurses’ efforts to continue to learn and increase their knowledge base and sensitivities to the culture of their clients in all dimensions of health care. The findings also support previous research and strengthen the understanding of the importance of cultural competency in the delivery of care to minority populations
Cerebral Air Embolism from Angioinvasive Cavitary Aspergillosis
Background. Nontraumatic cerebral air embolism cases are rare. We report a case of an air embolism resulting in cerebral infarction related to angioinvasive cavitary aspergillosis. To our knowledge, there have been no previous reports associating these two conditions together. Case Presentation. A 32-year-old female was admitted for treatment of acute lymphoblastic leukemia (ALL). Her hospital course was complicated by pulmonary aspergillosis. On hospital day 55, she acutely developed severe global aphasia with right hemiplegia. A CT and CT-angiogram of her head and neck were obtained demonstrating intravascular air emboli within the left middle cerebral artery (MCA) branches. She was emergently taken for hyperbaric oxygen therapy (HBOT). Evaluation for origin of the air embolus revealed an air focus along the left lower pulmonary vein. Over the course of 48 hours, her symptoms significantly improved. Conclusion. This unique case details an immunocompromised patient with pulmonary aspergillosis cavitary lesions that invaded into a pulmonary vein and caused a cerebral air embolism. With cerebral air embolisms, the acute treatment option differs from the typical ischemic stroke pathway and the provider should consider emergent HBOT. This case highlights the importance of considering atypical causes of acute ischemic stroke
Recommended from our members
Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases.
PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses
Increased corpus callosum volume in children with chromosome 22q11.2 deletion syndrome is associated with neurocognitive deficits and genetic polymorphisms
Chromosome 22q11.2 deletion syndrome (22q11DS) is associated with neurocognitive impairments. The neural substrates of cognitive impairments in 22q11DS remain poorly understood. Because the corpus callosum (CC) is found to be abnormal in a variety of neurodevelopmental disorders, we obtained volumetric measurements of the CC and its subregions, examined the relationship between these regions and neurocognition and selected genotypes within candidate genes in the 22q11.2 interval in 59 children with 22q11DS and 53 control subjects. The total CC, splenium and genu were significantly larger in children with 22q11DS and the enlargement was associated with better neurocognitive functioning in the 22q11DS group, suggestive of a compensatory increase in the CC volumes. The expected age-related increase in the volume of the CC was not seen in children with 22q11DS, indicative of dysmaturation of the CC in these children. The increased volumes in the genu, splenium and total CC in the 22q11DS group were associated with polymorphisms within the candidate genes: COMT (rs4680), ZDHHC8 (rs175174) and UFD1L (rs5992403). These findings indicate that alterations in the CC volume in children with 22q11DS are associated with cognition and specific genotypes in the 22q11.2 interval
Ventromedial Prefrontal Cortex Activation Is Associated with Memory Formation for Predictable Rewards
During reinforcement learning, dopamine release shifts from the moment of reward consumption to the time point when the reward can be predicted. Previous studies provide consistent evidence that reward-predicting cues enhance long-term memory (LTM) formation of these items via dopaminergic projections to the ventral striatum. However, it is less clear whether memory for items that do not precede a reward but are directly associated with reward consumption is also facilitated. Here, we investigated this question in an fMRI paradigm in which LTM for reward-predicting and neutral cues was compared to LTM for items presented during consumption of reliably predictable as compared to less predictable rewards. We observed activation of the ventral striatum and enhanced memory formation during reward anticipation. During processing of less predictable as compared to reliably predictable rewards, the ventral striatum was activated as well, but items associated with less predictable outcomes were remembered worse than items associated with reliably predictable outcomes. Processing of reliably predictable rewards activated the ventromedial prefrontal cortex (vmPFC), and vmPFC BOLD responses were associated with successful memory formation of these items. Taken together, these findings show that consumption of reliably predictable rewards facilitates LTM formation and is associated with activation of the vmPFC
Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10−4, 3.1×10−5, and 6.4×10−6  Mpc−3 yr−1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge. © 2012 The American Physical Societ
Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600–1000 Hz, we obtained a 95% upper limit on the amplitude of ΩGW(f)=Ω3(f/900  Hz)3, of Ω3<0.32, assuming a value of the Hubble parameter of h100=0.71. These new limits are a factor of seven better than the previous best in this frequency band. © 2012 The American Physical Societ
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration ≲1  s over the frequency band 64–5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range ∼5×10−22  Hz−1/2 to ∼1×10−20  Hz−1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors. © 2012 The American Physical Societ
Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10−3  yr−1 L10−1, 2.2×10−3  yr−1 L10−1, and 4.4×10−4  yr−1 L10−1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations. © 2010 The American Physical Societ
Search for gravitational waves from intermediate mass binary black holes
We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100–450  M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88  M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level. © 2012 The American Physical Societ
- …