13 research outputs found

    Efficient derivation of chimeric-antigen receptor-modified TSCM cells

    Get PDF
    Chimeric-antigen receptor (CAR) T-cell immunotherapy employs autologous-T cells modified with an antigen-specific CAR. Current CAR-T manufacturing processes tend to yield products dominated by effector T cells and relatively small proportions of long-lived memory T cells. Those few cells are a so-called stem cell memory T (TSCM) subset, which express naĂŻve T-cell markers and are capable of self-renewal and oligopotent differentiation into effector phenotypes. Increasing the proportion of this subset may lead to more effective therapies by improving CAR-T persistence; however, there is currently no standardized protocol for the effective generation of CAR-TSCM cells. Here we present a simplified protocol enabling efficient derivation of gene-modified TSCM cells: Stimulation of naĂŻve CD8+ T cells with only soluble anti-CD3 antibody and culture with IL-7 and IL-15 was sufficient for derivation of CD8+ T cells harboring TSCM phenotypes and oligopotent capabilities. These in-vitro expanded TSCM cells were engineered with CARs targeting the HIV-1 envelope protein as well as the CD19 molecule and demonstrated effector activity both in vitro and in a xenograft mouse model. This simple protocol for the derivation of CAR-TSCM cells may facilitate improved adoptive immunotherapy

    Beyond Gaman: Critical Factors Involved in Little Tokyo’s COVID-19 Pandemic Response

    No full text
    Gaman is a value associated with the endurance of individuals of Japanese descent unjustly incarcerated by the U.S. War Relocation Authority during World War II; this sentiment rings familiar in the COVID-19 pandemic, throughout which the public has been urged to remain resilient despite social determinants of health-related issues disproportionately impacting cultural communities. This study focuses on the culturally tailored programs and services of three Little Tokyo-based organizations, with five “Critical Factors” that enabled effective organizing during the COVID-19 pandemic identified through interviews with twelve key staff members: Trust, Financial Capacity, Physical Space, Organizational Capacity, and Legacy Investment. These findings shed light on the strengths of and challenges faced by Little Tokyo community organizers, emphasize the unique role of community-centered organizations in addressing health needs, and inform a conceptual model for Community-Centered Health—a model that advocates for building systems of care rooted in trusting relationships and predicated upon gratitude

    Nanoencapsulated rituximab mediates superior cellular immunity against metastatic B-cell lymphoma in a complement competent humanized mouse model

    No full text
    Background Despite the numerous applications of monoclonal antibodies (mAbs) in cancer therapeutics, animal models available to test the therapeutic efficacy of new mAbs are limited. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice are one of the most highly immunodeficient strains and are universally used as a model for testing cancer-targeting mAbs. However, this strain lacks several factors necessary to fully support antibody-mediated effector functions—including antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity (CDC)—due to the absence of immune cells as well as a mutation in the Hc gene, which is needed for a functional complement system.Methods We have developed a humanized mouse model using a novel NSG strain, NOD.Cg−Hc1Prkdcscid Il2rgtm1Wjl/SzJ (NSG−Hc1), which contains the corrected mutation in the Hc gene to support CDC in addition to other mechanisms endowed by humanization. With this model, we reevaluated the anticancer efficacies of nanoencapsulated rituximab after xenograft of the human Burkitt lymphoma cell line 2F7-BR44.Results As expected, xenografted humanized NSG−Hc1 mice supported superior lymphoma clearance of native rituximab compared with the parental NSG strain. Nanoencapsulated rituximab with CXCL13 conjugation as a targeting ligand for lymphomas further enhanced antilymphoma activity in NSG−Hc1 mice and, more importantly, mediated antilymphoma cellular responses.Conclusions These results indicate that NSG−Hc1 mice can serve as a feasible model for both studying antitumor treatment using cancer targeting as well as understanding induction mechanisms of antitumor cellular immune response

    Nanoencapsulated rituximab mediates superior cellular immunity against metastatic B-cell lymphoma in a complement competent humanized mouse model.

    No full text
    BackgroundDespite the numerous applications of monoclonal antibodies (mAbs) in cancer therapeutics, animal models available to test the therapeutic efficacy of new mAbs are limited. NOD.Cg-Prkdcscid Il2rg tm1Wjl /SzJ (NSG) mice are one of the most highly immunodeficient strains and are universally used as a model for testing cancer-targeting mAbs. However, this strain lacks several factors necessary to fully support antibody-mediated effector functions-including antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity (CDC)-due to the absence of immune cells as well as a mutation in the Hc gene, which is needed for a functional complement system.MethodsWe have developed a humanized mouse model using a novel NSG strain, NOD.Cg-Hc1 Prkdcscid Il2rgtm1Wjl/SzJ (NSG-Hc1), which contains the corrected mutation in the Hc gene to support CDC in addition to other mechanisms endowed by humanization. With this model, we reevaluated the anticancer efficacies of nanoencapsulated rituximab after xenograft of the human Burkitt lymphoma cell line 2F7-BR44.ResultsAs expected, xenografted humanized NSG-Hc1 mice supported superior lymphoma clearance of native rituximab compared with the parental NSG strain. Nanoencapsulated rituximab with CXCL13 conjugation as a targeting ligand for lymphomas further enhanced antilymphoma activity in NSG-Hc1 mice and, more importantly, mediated antilymphoma cellular responses.ConclusionsThese results indicate that NSG-Hc1 mice can serve as a feasible model for both studying antitumor treatment using cancer targeting as well as understanding induction mechanisms of antitumor cellular immune response
    corecore