60 research outputs found

    Leefbaarheid & kulturhusen : welke overheid doet wat?

    Get PDF
    Een discussienotitie over verschillende overheidsrollen, taken en verantwoordelijkheden bij het waarborgen van leefbaarheid, specifiek de ontwikkeling van het kulturhus-concept

    Characterization of neurometabolic 2-hydroxyglutaric acidurias and discovery of D-2-hydroxyglutaric aciduria type II

    Get PDF
    Jakobs, C.A.J.M. [Promotor]Struijs, E.A. [Copromotor]Salomons, G.S. [Copromotor

    Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae

    Get PDF
    Telomeres of the Mamestra brassica holocentric chromosomes were studied by Southern blotting, in-situ hybridization and Bal31 assay evidencing the presence of the telomeric (TTAGG)(n) repeat. Successively, molecular analysis of telomeres showed that TRAS1 transposable elements were present at the subtelomeric regions of autosomes but not in the NOR-bearing telomeres of the Z and W sex chromosomes. TRAS1 appeared to be transcriptionally active and non-methylated, as evaluated by RT-PCR and digestion with MspI and HpaII. Finally, dot-blotting experiments showed that the 2.8 +/- 0.5% of the M. brassicae genome consists of TRAS1

    Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH Mutations in Glioblastoma

    Get PDF
    Isocitrate dehydrogenases (IDHs) catalyse oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). IDH1 functions in the cytosol and peroxisomes, whereas IDH2 and IDH3 are both localized in the mitochondria. Heterozygous somatic mutations in IDH1 occur at codon 132 in 70% of grade II–III gliomas and secondary glioblastomas (GBMs), and in 5% of primary GBMs. Mutations in IDH2 at codon 172 are present in grade II–III gliomas at a low frequency. IDH1 and IDH2 mutations cause both loss of normal enzyme function and gain-of-function, causing reduction of α-KG to D-2-hydroxyglutarate (D-2HG) which accumulates. Excess hydroxyglutarate (2HG) can also be caused by germline mutations in D- and L-2-hydroxyglutarate dehydrogenases (D2HGDH and L2HGDH). If loss of IDH function is critical for tumourigenesis, we might expect some tumours to acquire somatic IDH3 mutations. Alternatively, if 2HG accumulation is critical, some tumours might acquire somatic D2HGDH or L2HGDH mutations. We therefore screened 47 glioblastoma samples looking for changes in these genes. Although IDH1 R132H was identified in 12% of samples, no mutations were identified in any of the other genes. This suggests that mutations in IDH3, D2HGDH and L2HGDH do not occur at an appreciable frequency in GBM. One explanation is simply that mono-allelic IDH1 and IDH2 mutations occur more frequently by chance than the bi-allelic mutations expected at IDH3, D2HGDH and L2HGDH. Alternatively, both loss of IDH function and 2HG accumulation might be required for tumourigenesis, and only IDH1 and IDH2 mutations have these dual effects

    A lymphoblast model for IDH2 gain-of-function activity in D-2-hydroxyglutaric aciduria type II: Novel avenues for biochemical and therapeutic studies

    Get PDF
    The recent discovery of heterozygous isocitrate dehydrogenase 2 (IDH2) mutations of residue Arg(140) to Gln(140) or Gly(140) (IDH2(wt/R140Q), IDH2(wt/R140G)) in d-2-hydroxyglutaric aciduria (D-2-HGA) has defined the primary genetic lesion in 50% of D-2-HGA patients, denoted type II. Overexpression studies with IDH1(R132H) and IDH2(R172K) mutations demonstrated that the enzymes acquired a new function, converting 2-ketoglutarate (2-KG) to d-2-hydroxyglutarate (D-2-HG), in lieu of the normal IDH reaction which reversibly converts isocitrate to 2-KG. To confirm the IDH2(wt/R140Q) gain-of-function in D-2-HGA type II, and to evaluate potential therapeutic strategies, we developed a specific and sensitive IDH2(wt/R140Q) enzyme assay in lymphoblasts. This assay determines gain-of-function activity which converts 2-KG to D-2-HG in homogenates of D-2-HGA type II lymphoblasts, and uses stable-isotope-labeled 2-keto[3,3,4,4-(2)H(4)]glutarate. The specificity and sensitivity of the assay are enhanced with chiral separation and detection of stable-isotope-labeled D-2-HG by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Eleven potential inhibitors of IDH2(wt/R140Q) enzyme activity were evaluated with this procedure. The mean reaction rate in D-2-HGA type II lymphoblasts was 8-fold higher than that of controls and D-2-HGA type I cells (14.4nmolh(-1)mgprotein(-1) vs. 1.9), with a corresponding 140-fold increase in intracellular D-2-HG level. Optimal inhibition of IDH2(wt/R140Q) activity was obtained with oxaloacetate, which competitively inhibited IDH2(wt/R140Q) activity. Lymphoblast IDH2(wt/R140Q) showed long-term cell culture stability without loss of the heterozygous IDH2(wt/R140Q) mutation, underscoring the utility of the lymphoblast model for future biochemical and therapeutic studies
    • …
    corecore