9 research outputs found
The Ks-band Tully-Fisher Relation - A Determination of the Hubble Parameter from 218 ScI Galaxies and 16 Galaxy Clusters
The value of the Hubble Parameter (H0) is determined using the
morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope
and zero point are determined using 36 calibrator galaxies with ScI morphology.
Calibration distances are adopted from direct Cepheid distances, and group or
companion distances derived with the Surface Brightness Fluctuation Method or
Type Ia Supernova. Distances are determined to 16 galaxy clusters and 218 ScI
galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a
weighted mean Hubble Parameter of H0=84.2 +/-6 km s-1 Mpc-1 is found. From the
218 ScI galaxies a Hubble Parameter of H0=83.4 +/-8 km s-1 Mpc-1 is found. When
the zero point of the K-TFR is corrected to account for recent results that
find a Large Magellanic Cloud distance modulus of 18.39 +/-0.05 a Hubble
Parameter of 88.0 +/-6 km s-1 Mpc-1 is found. A comparison with the results of
the Hubble Key Project (Freedman et al 2001) is made and discrepancies between
the K-TFR distances and the HKP I-TFR distances are discussed. Implications for
Lamda-CDM cosmology are considered with H0=84 km s-1 Mpc-1. (Abridged)Comment: 37 pages including 12 tables and 7 figures. Final version accepted
for publication in the Journal of Astrophysics & Astronom
Parallel Real Root Isolation using the Descartes Method
Many sequential methods for polynomial real root isolation proceed by interval bisection. The associated binary search trees tend to be narrow and hence do not offer much parallelism. For this reason, it is not obvious how real roots can be isolated in parallel. The paper presents an approach that parallelizes the computations associated with each node of the search tree. In the Descartes method these computations can be modeled by a pyramid dag. The pyramid dag is scheduled using a new method that has linear communication overhead. This method can also be used for a number of dynamic programming problems. In addition to parallelizing node computations, the parallel Descartes method exploits any available parallelism at the search tree level. The (parallel) computations associated with the search nodes in each tree level are scheduled using a new centralized method for distributing uniform parallelizable tasks. When isolating the real roots of random polynomials of degrees ..
Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis.
Carcinoma cells undergo epithelial-mesenchymal transition (EMT); however, contributions of EMT heterogeneity to disease progression remain a matter of debate. Here, we addressed the EMT status of ex vivo cultured circulating and disseminated tumor cells (CTCs/DTCs) in a syngeneic mouse model of metastatic breast cancer (MBC). Epithelial-type CTCs with a restricted mesenchymal transition had the strongest lung metastases formation ability, whereas mesenchymal-type CTCs showed limited metastatic ability. EpCAM expression served as a surrogate marker to evaluate the EMT heterogeneity of clinical samples from MBC, including metastases, CTCs, and DTCs. The proportion of epithelial-type CTCs, and especially DTCs, correlated with distant metastases and poorer outcome of patients with MBC. This study fosters our understanding of EMT in metastasis and underpins heterogeneous EMT phenotypes as important parameters for tumor prognosis and treatment. We further suggest that EpCAM-dependent CTC isolation systems will underestimate CTC numbers but will quantify clinically relevant metastatic cells