30,728 research outputs found

    A New Universality for Random Sequential Deposition of Needles

    Full text link
    Percolation and jamming phenomena are investigated for random sequential deposition of rectangular needles on d=2d=2 square lattices. Associated thresholds pcpercp_c^{perc} and pcjamp_c^{jam} are determined for various needle sizes. Their ratios pcperc/pcjamp_c^{perc} / p_c^{jam} are found to be a constant 0.62±0.010.62 \pm 0.01 for all sizes. In addition the ratio of jamming thresholds for respectively square blocks and needles is also found to be a constant 0.79±0.010.79 \pm 0.01. These constants exhibit some universal connexion in the geometry of jamming and percolation for both anisotropic shapes (needles versus square lattices) and isotropic shapes (square blocks on square lattices). A universal empirical law is proposed for all three thresholds as a function of aa.Comment: 9 pages, latex, 4 eps figures include

    High-resolution single-pulse studies of the Vela Pulsar

    Get PDF
    We present high-resolution multi-frequency single-pulse observations of the Vela pulsar, PSR B0833-45, aimed at studying micro-structure, phase-resolved intensity fluctuations and energy distributions at 1.41 and 2.30 GHz. We show that the micro-pulse width in pulsars has a period dependence. Like individual pulses, Vela's micro-pulses are highly elliptically polarized. There is a strong correlation between Stokes parameters V and I in the micro-structure. We show that the V/I distribution is Gaussian with a narrow width and that this width appears to be constant as a function of pulse phase. The phase-resolved intensity distributions of I are best fitted with log-normal statistics. Extra emission components, i.e.``bump'' and ``giant micro-pulses'', discovered by Johnston et al.(2001) are also present at 2.3 GHz. The bump component seems to be an extra component superposed on the main pulse profile but does not appear periodically. The giant micro-pulses are time-resolved and have significant jitter in their arrival times. Their flux density distribution is best fitted by a power-law, indicating a link between these features and ``classical'' giant pulses as observed for the Crab pulsar, (PSR B0531+21), PSR B1937+21 and PSR B1821-24. We find that Vela contains a mixture of emission properties representing both ``classical'' properties of radio pulsars (e.g. micro-structure, high degree of polarization, S-like position angle swing, orthogonal modes) and features which are most likely related to high-energy emission (e.g. extra profile components, giant micro-pulses). It hence represents an ideal test case to study the relationship between radio and high-energy emission in significant detail.Comment: accepted for publication in MNRAS (11 pages, 10 figures

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427

    Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere

    Get PDF
    The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced

    Factorization breaking in high-transverse-momentum charged-hadron production at the Tevatron?

    Full text link
    We compare the transverse momentum (p_T) distribution of inclusive light-charged-particle production measured by the CDF Collaboration at the Fermilab Tevatron with the theoretical prediction evaluated at next-to-leading order in quantum chromodynamics (QCD) using fragmentation functions recently determined through a global data fit. While, in the lower p_T range, the data agree with the prediction within the theoretical error or slightly undershoot it, they significantly exceed it in the upper p_T range, by several orders of magnitude at the largest values of p_T, where perturbation theory should be most reliable. This disagreement is too large to be remedied by introducing additional produced particles into the calculation, and potentially challenges the validity of the factorization theorem on which the parton model of QCD relies. Clearly, a breakdown of the factorization theorem, being a fundamental property of QCD, would be extremely difficult to understand.Comment: 9 pages, 5 figures; discussion extended, references added; accepted for publication in Physical Review Letter

    Localized low-frequency Neumann modes in 2d-systems with rough boundaries

    Full text link
    We compute the relative localization volumes of the vibrational eigenmodes in two-dimensional systems with a regular body but irregular boundaries under Dirichlet and under Neumann boundary conditions. We find that localized states are rare under Dirichlet boundary conditions but very common in the Neumann case. In order to explain this difference, we utilize the fact that under Neumann conditions the integral of the amplitudes, carried out over the whole system area is zero. We discuss, how this condition leads to many localized states in the low-frequency regime and show by numerical simulations, how the number of the localized states and their localization volumes vary with the boundary roughness.Comment: 7 pages, 4 figure

    A unified approach to linking experimental, statistical and computational analysis of spike train data

    Get PDF
    A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.Published versio
    • …
    corecore