25,011 research outputs found

    A class of homogeneous scalar-tensor cosmologies with a radiation fluid

    Get PDF
    We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar-tensor theories. The solutions belong to Bianchi type VIhVI_{h} cosmologies. Explicit examples of nonsingular homogeneous scalar-tensor cosmologies are also given.Comment: 7 pages, LaTex; v2 type mistakes corrected, comments adde

    New spherically symmetric monopole and regular solutions in Einstein-Born-Infeld theories

    Full text link
    In this work a new asymptotically flat solution of the coupled Einstein-Born-Infeld equations for a static spherically symmetric space-time is obtained. When the intrinsic mass is zero the resulting spacetime is regular everywhere, in the sense given by B. Hoffmann and L. Infeld in 1937, and the Einstein-Born-Infeld theory leads to the identification of the gravitational with the electromagnetic mass. This means that the metric, the electromagnetic field and their derivatives have not discontinuities in all the manifold. In particular, there are not conical singularities at the origin, in contrast to well known monopole solution studied by B. Hoffmann in 1935. The lack of uniqueness of the action function in Non-Linear-Electrodynamics is discussed.Comment: Final version in journal. Amplied version with new results that previous talk in Protvino worksho

    Comment on "Absence of trapped surfaces and singularities in cylindrical collapse"

    Full text link
    Recently, the gravitational collapse of an infinite cylindrical thin shell of matter in an otherwise empty spacetime with two hypersurface orthogonal Killing vectors was studied by Gon\c{c}alves [Phys. Rev. {\bf D65}, 084045 (2002).]. By using three "alternative" criteria for trapped surfaces, the author claimed to have shown that {\em they can never form either outside or on the shell, regardingless of the matter content for the shell, except at asymptotical future null infinite}. Following Penrose's original idea, we first define trapped surfaces in cylindrical spacetimes in terms of the expansions of null directions orthogonal to the surfaces, and then show that the first criterion used by Gon\c{c}alves is incorrect. We also show that his analysis of non-existence of trapped surfaces in vacuum is incomplete. To confirm our claim, we present an example that is a solution to the vacuum Einstein field equations and satisfies all the regular conditions imposed by Gon\c{c}alves. After extending the solution to the whole spacetime, we show explicitly that trapped surfaces exist in the extended region.Comment: latex, 2 figures, the last version to appear in Phys. Rev.

    Observables in the Decays of B to Two Vector Mesons

    Full text link
    In general there are nine observables in the decay of a B meson to two vector mesons defined in terms of polarization correlations of these mesons. Only six of these can be detected via the subsequent decay angular distributions because of parity conservation in those decays. The remaining three require the measurement of the spin polarization of one of the decay products.Comment: 12 pages, no figur

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427

    Singularity free cosmological solutions of Einstein-Maxwell equations

    Get PDF
    We report on a new two-parameter class of cosmological solutions to the Einstein-Maxwell equations. The solutions have everywhere regular curvature invariants. We prove that the solutions are geodesically complete and globally hyperbolic.Comment: 8 pages,latex; v2 some typos correcte

    Kaluza-Klein solitons reexamined

    Get PDF
    In (4 + 1) gravity the assumption that the five-dimensional metric is independent of the fifth coordinate authorizes the extra dimension to be either spacelike or timelike. As a consequence of this, the time coordinate and the extra coordinate are interchangeable, which in turn allows the conception of different scenarios in 4D from a single solution in 5D. In this paper, we make a thorough investigation of all possible 4D scenarios, associated with this interchange, for the well-known Kramer-Gross-Perry-Davidson-Owen set of solutions. We show that there are {\it three} families of solutions with very distinct geometrical and physical properties. They correspond to different sets of values of the parameters which characterize the solutions in 5D. The solutions of physical interest are identified on the basis of physical requirements on the induced-matter in 4D. We find that only one family satisfies these requirements; the other two violate the positivity of mass-energy density. The "physical" solutions possess a lightlike singularity which coincides with the horizon. The Schwarzschild black string solution as well as the zero moment dipole solution of Gross and Perry are obtained in different limits. These are analyzed in the context of Lake's geometrical approach. We demonstrate that the parameters of the solutions in 5D are not free, as previously considered. Instead, they are totally determined by measurements in 4D. Namely, by the surface gravitational potential of the astrophysical phenomena, like the Sun or other stars, modeled in Kaluza-Klein theory. This is an important result which may help in observations for an experimental/observational test of the theory.Comment: In V2 we include an Appendix, where we examine the conformal approach. Minor changes at the beginning of section 2. In V3 more references are added. Minor editorial changes in the Introduction and Conclusions section

    On some geometric features of the Kramer interior solution for a rotating perfect fluid

    Get PDF
    Geometric features (including convexity properties) of an exact interior gravitational field due to a self-gravitating axisymmetric body of perfect fluid in stationary, rigid rotation are studied. In spite of the seemingly non-Newtonian features of the bounding surface for some rotation rates, we show, by means of a detailed analysis of the three-dimensional spatial geodesics, that the standard Newtonian convexity properties do hold. A central role is played by a family of geodesics that are introduced here, and provide a generalization of the Newtonian straight lines parallel to the axis of rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical and Quantum Gravit

    MobDSL: a domain specific language for multiple mobile platform deployment

    Get PDF
    There is increasing interest in establishing a presence in the mobile application market, with platforms including Apple iPhone, Google Android and Microsoft Windows Mobile. Because of the differences in platform languages, frameworks, and device hardware, development of an application for more than one platform can be a difficult task. In this paper we address this problem by the creation of a mobile Domain Specific Language (DSL). Domain analysis was carried out using two case studies, inferring basic requirements of the language. The paper further introduces a language calculus definition and provides discussion how it fits the domain analysis, and any issues found in our approach

    On a Petrov-type D homogeneous solution

    Full text link
    We present a new two-parameter family of solutions of Einstein gravity with negative cosmological constant in 2+1 dimensions. These solutions are obtained by squashing the anti-de Sitter geometry along one direction and posses four Killing vectors. Global properties as well as the four dimensional generalization are discussed, followed by the investigation of the geodesic motion. A simple global embedding of these spaces as the intersection of four quadratic surfaces in a seven dimensional space is obtained. We argue also that these geometries describe the boundary of a four dimensional nutty-bubble solution and are relevant in the context of AdS/CFT correspondence.Comment: 20 pages, TeX fil
    corecore