10,813 research outputs found

    Modeling the sorption dynamics of NaH using a reactive force field

    Get PDF
    We have parametrized a reactive force field for NaH, ReaxFFNaH, against a training set of ab initio derived data. To ascertain that ReaxFFNaH is properly parametrized, a comparison between ab initio heats of formation of small representative NaH clusters with ReaxFFNaH was done. The results and trend of ReaxFFNaH are found to be consistent with ab initio values. Further validation includes comparing the equations of state of condensed phases of Na and NaH as calculated from ab initio and ReaxFFNaH. There is a good match between the two results, showing that ReaxFFNaH is correctly parametrized by the ab initio training set. ReaxFFNaH has been used to study the dynamics of hydrogen desorption in NaH particles. We find that ReaxFFNaH properly describes the surface molecular hydrogen charge transfer during the abstraction process. Results on heat of desorption versus cluster size shows that there is a strong dependence on the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. To gain more insight into the structural transformations of NaH during thermal decomposition, we performed a heating run in a molecular dynamics simulation. These runs exhibit a series of drops in potential energy, associated with cluster fragmentation and desorption of molecular hydrogen. This is consistent with experimental evidence that NaH dissociates at its melting point into smaller fragments

    Predictions of melting, crystallization, and local atomic arrangements of aluminum clusters using a reactive force field

    Get PDF
    A parametrized reactive force field model for aluminum ReaxFFAl has been developed based on density functional theory (DFT) data. A comparison has been made between DFT and ReaxFFAl outputs to ascertain whether ReaxFFAl is properly parametrized and to check if the output of the latter has correlation with DFT results. Further checks include comparing the equations of state of condensed phases of Al as calculated from DFT and ReaxFFAl. There is a good match between the two results, again showing that ReaxFFAl is correctly parametrized as per the DFT input. Simulated annealing has been performed on aluminum clusters Aln using ReaxFFAl to find the stable isomers of the clusters. A plot of stability function versus cluster size shows the existence of highly stable clusters (magic clusters). Quantum mechanically these magic clusters arise due to the complete filling of the orbital shells. However, since force fields do not care about electrons but work on the assumption of validity of Born–Oppenheimer approximation, the magic clusters are therefore correlated with high structural symmetry. There is a rapid decline in surface energy contribution due to the triangulated nature of the surface atoms leading to higher coordination number. The bulk binding energy is computed to be 76.8 kcal/mol. This gives confidence in the suitability of ReaxFF for studying and understanding the underlying dynamics in aluminum clusters. In the quantification of the growth of cluster it is seen that as the size of the clusters increase there is preference for the coexistence of fcc/hcp orders at the expense of simple icosahedral ordering, although there is some contribution from distorted icosahedral ordering. It is found that even for aluminum clusters with 512 atoms distorted icosahedral ordering exists. For clusters with N≄256 atoms fcc ordering dominates, which implies that at this point we are already on the threshold of bulklike bonding

    Parametrization of a reactive force field for aluminum hydride

    Get PDF
    A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF_(AlH_3) is used to study the dynamics governing hydrogen desorption in AlH_3. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF_(AlH_3). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. In the gas phase, it was observed that small alane clusters agglomerated into a bigger cluster. After agglomeration molecular hydrogen was desorbed from the structure. This thermodynamically driven spontaneous agglomeration followed by desorption of molecular hydrogen provides a mechanism on how mobile alane clusters can facilitate the mass transport of aluminum atoms during the thermal decomposition of NaAlH_4

    Anomalous scattering of highly dispersed pulsars

    Get PDF
    We report multifrequency measurements of scatter broadening times for nine highly dispersed pulsars over a wide frequency range (0.6 -- 4.9 GHz). We find the scatter broadening times to be larger than expected and to scale with frequency with an average power-law index of 3.44±0.133.44\pm 0.13, i.e. significantly less than that expected from standard theories. Such possible discrepancies have been predicted very recently by Cordes & Lazio.Comment: 7 pages, 4 figures, accepted for publication in ApJ Letter

    Toward An Empirical Theory of Pulsar Emission. VII. On the Spectral Behavior of Conal Beam Radii and Emission Heights

    Get PDF
    In this paper we return to the old problem of conal component-pair widths and profile dimensions. Observationally, we consider a set of 10 pulsars with prominent conal component pairs, for which well measured profiles exist over the largest frequency range now possible. Apart from some tendency to narrow at high frequency, the conal components exhibit almost constant widths. We use all three profile measures, the component separation as well as the outside half-power and 10% widths, to determine conal beam radii, which are the focus of our subsequent analysis. These radii at different frequencies are well fitted by a relationship introduced by Thorsett (1991), but the resulting parameters are highly correlated. Three different types of behavior are found: one group of stars exhibits a continuous variation of beam radius which can be extrapolated down to the stellar surface along the ``last open field lines''; a second group exhibits beam radii which asymptotically approach a minimum high frequency value that is 3--5 times larger; and a third set shows almost no spectral change in beam radius at all. The first two behaviors are associated with outer-cone component pairs; whereas the constant separation appears to reflect inner-cone emission.Comment: 21 pages, 11 figures, accepted for publication in Astrophysical Journal, uses aaste

    Pattern forming instability induced by light in pure and dye-doped nematic liquid crystals

    Full text link
    We study theoretically the instabilities induced by a linearly polarized ordinary light wave incident at a small oblique angle on a thin layer of homeotropically oriented nematic liquid crystal with special emphasis on the dye-doped case. The spatially periodic Hopf bifurcation that occurs as the secondary instability after the stationary Freedericksz transition is analyzed.Comment: 8 pages, 7 figures, LaTeX, accepted to Phys. Rev.

    Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH

    Get PDF
    Parameterization of a reactive force field for NaH is done using ab initio derived data. The parameterized force field(ReaxFFNaH) is used to study the dynamics governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by the parameterized force field. To gain more insight into the mechanism governing structural transformation of NaH during thermal decomposition a heating run in a molecular dynamics simulation is done. The result shows that a clear signature of hydrogen desorption is the fall in potential energy surface during heating

    Multiscale modeling of interaction of alane clusters on Al(111) surfaces: A reactive force field and infrared absorption spectroscopy approach

    Get PDF
    We have used reactive force field (ReaxFF) to investigate the mechanism of interaction of alanes on Al(111) surface. Our simulations show that, on the Al(111) surface, alanes oligomerize into larger alanes. In addition, from our simulations, adsorption of atomic hydrogen on Al(111) surface leads to the formation of alanes via H-induced etching of aluminum atoms from the surface. The alanes then agglomerate at the step edges forming stringlike conformations. The identification of these stringlike intermediates as a precursor to the bulk hydride phase allows us to explain the loss of resolution in surface IR experiments with increasing hydrogen coverage on single crystal Al(111) surface. This is in excellent agreement with the experimental works of Go et al. [ E. Go, K. Thuermer, and J. E. Reutt-Robey, Surf. Sci. 437, 377 (1999) ]. The mobility of alanes molecules has been studied using molecular dynamics and it is found that the migration energy barrier of Al_(2)H_6 is 2.99 kcal/mol while the prefactor is D_0 = 2.82 × 10^(−3) cm^2/s. We further investigated the interaction between an alane and an aluminum vacancy using classical molecular dynamics simulations. We found that a vacancy acts as a trap for alane, and eventually fractionates/annihilates it. These results show that ReaxFF can be used, in conjunction with ab initio methods, to study complex reactions on surfaces at both ambient and elevated temperature conditions

    Orientational instabilities in nematics with weak anchoring under combined action of steady flow and external fields

    Full text link
    We study the homogeneous and the spatially periodic instabilities in a nematic liquid crystal layer subjected to steady plane {\em Couette} or {\em Poiseuille} flow. The initial director orientation is perpendicular to the flow plane. Weak anchoring at the confining plates and the influence of the external {\em electric} and/or {\em magnetic} field are taken into account. Approximate expressions for the critical shear rate are presented and compared with semi-analytical solutions in case of Couette flow and numerical solutions of the full set of nematodynamic equations for Poiseuille flow. In particular the dependence of the type of instability and the threshold on the azimuthal and the polar anchoring strength and external fields is analysed.Comment: 12 pages, 6 figure

    Dirichlet Boundary Value Problems of the Ernst Equation

    Full text link
    We demonstrate how the solution to an exterior Dirichlet boundary value problem of the axisymmetric, stationary Einstein equations can be found in terms of generalized solutions of the Backlund type. The proof that this generalization procedure is valid is given, which also proves conjectures about earlier representations of the gravitational field corresponding to rotating disks of dust in terms of Backlund type solutions.Comment: 22 pages, to appear in Phys. Rev. D, Correction of a misprint in equation (4
    • 

    corecore