18,931 research outputs found

    Tungsten-rhenium alloy thermocouples effective for high-temperature measurement

    Get PDF
    Tungsten-rhenium alloy thermocouples, specifically, insulated, sheathed W/W plus 26Re and W plus 5 Re/W plus 26 Re thermocouples, are effective for temperature measurement in excess of 2920 degrees C. These thermocouples have a high thermoelectric output and excellent relationship to temperatures up to 2760 degrees C

    The cognitive demands of second order manual control: Applications of the event related brain potential

    Get PDF
    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP

    Exponential localization in one-dimensional quasiperiodic optical lattices

    Full text link
    We investigate the localization properties of a one-dimensional bichromatic optical lattice in the tight binding regime, by discussing how exponentially localized states emerge upon changing the degree of commensurability. We also review the mapping onto the discrete Aubry-Andre' model, and provide evidences on how the momentum distribution gets modified in the crossover from extended to exponentially localized states. This analysis is relevant to the recent experiment on Anderson localization of a noninteracting Bose-Einstein condensate in a quasiperiodic optical lattice [G. Roati et al., Nature 453, 895 (2008)].Comment: 13 pages, 6 figure

    The Gravitational and Electrostatic Fields Far from an Isolated Einstein-Maxwell Source

    Full text link
    The exterior solution for an arbitrary charged, massive source, is studied as a static deviation from the Reissner-Nordstr\o m metric. This is reduced to two coupled ordinary differential equations for the gravitational and electrostatic potential functions. The homogeneous equations are explicitly solved in the particular case q2=m2q^2=m^2, obtaining a multipole expansion with radial hypergeometric dependence for both potentials. In the limiting case of a neutral source, the equations are shown to coincide with recent results by Bondi and Rindler.Comment: 11 pages, revTe

    Electron propagation in crossed magnetic and electric fields

    Full text link
    Laser-atom interaction can be an efficient mechanism for the production of coherent electrons. We analyze the dynamics of monoenergetic electrons in the presence of uniform, perpendicular magnetic and electric fields. The Green function technique is used to derive analytic results for the field--induced quantum mechanical drift motion of i) single electrons and ii) a dilute Fermi gas of electrons. The method yields the drift current and, at the same time it allows us to quantitatively establish the broadening of the (magnetic) Landau levels due to the electric field: Level number k is split into k+1 sublevels that render the kkth oscillator eigenstate in energy space. Adjacent Landau levels will overlap if the electric field exceeds a critical strength. Our observations are relevant for quantum Hall configurations whenever electric field effects should be taken into account.Comment: 11 pages, 2 figures, submitte

    Detection of the gravitomagnetic clock effect

    Get PDF
    The essence of the gravitomagnetic clock effect is properly defined showing that its origin is in the topology of world lines with closed space projections. It is shown that, in weak field approximation and for a spherically symmetric central body, the loss of synchrony between two clocks counter-rotating along a circular geodesic is proportional to the angular momentum of the source of the gravitational field. Numerical estimates are presented for objects within the solar system. The less unfavorable situation is found around Jupiter.Comment: 14 pages; Latex. To be published on Classical and Quantum Gravit

    Spherically symmetric static solution for colliding null dust

    Get PDF
    The Einstein equations are integrated in the presence of two (incoming and outgoing) streams of null dust, under the assumptions of spherical symmetry and staticity. The solution is also written in double null and radiation coordinates and it is reinterpreted as an anisotropic fluid. Interior matching with a static fluid and exterior matching with the Vaidya solution along null hypersurfaces is discussed. The connection with two-dimensional dilaton gravity is established.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Wigner Molecules in Nanostructures

    Full text link
    The one-- and two-- particle densities of up to four interacting electrons with spin, confined within a quasi one--dimensional ``quantum dot'' are calculated by numerical diagonalization. The transition from a dense homogeneous charge distribution to a dilute localized Wigner--type electron arrangement is investigated. The influence of the long range part of the Coulomb interaction is studied. When the interaction is exponentially cut off the ``crystallized'' Wigner molecule is destroyed in favor of an inhomogeneous charge distribution similar to a charge density wave .Comment: 10 pages (excl. Figures), Figures available on request LaTe
    corecore