16 research outputs found

    Transcriptomic effects of Tet-on and mifepristone-inducible systems in mouse liver

    Get PDF
    Control of transgene expression from long-term expression vectors can be achieved with inducible and regulated promoters. The two most commonly used inducible systems employ doxycycline or mifepristone as the drug activating a silent trans-activator, which is expressed from a constitutive promoter. We evaluated the alterations provoked by constitutive expression in the liver of rtTA2(S)-M2 (rtTA2; second-generation reverse tetracycline-controlled trans-activator) and GLp65, which are the trans-activators of the doxycyline- and mifepristone-inducible systems, respectively. To this end we performed transcriptomic analysis of mice expressing these trans-activators in the liver over 1 month. rtTA2 expression induced alterations in a few genes (69 gene probesets; false discovery rate [FDR], approximately 0.05), whereas GLp65 caused more numerous changes (1059 gene probe-sets, an FDR of approximately 0.05). However, only 20 and 53 of the genes from the rtTA2 and GLp65 groups, respectively, showed changes (R-fold >or= 3). Functional assignments indicate that alterations were mild and of little general significance. Few additional transcriptomic changes were observed when expressing trans-activators in the presence of inducer drugs; most were due to the drugs themselves. These results and the absence of toxicity observed in treated animals indicate that the two inducible systems are well tolerated and have little impact on the liver transcriptome profile. The milder alterations found with the use of rtTA2 suggest that this system is possibly safer for gene therapy application

    Transcriptomic effects of Tet-on and mifepristone-inducible systems in mouse liver

    Get PDF
    Control of transgene expression from long-term expression vectors can be achieved with inducible and regulated promoters. The two most commonly used inducible systems employ doxycycline or mifepristone as the drug activating a silent trans-activator, which is expressed from a constitutive promoter. We evaluated the alterations provoked by constitutive expression in the liver of rtTA2(S)-M2 (rtTA2; second-generation reverse tetracycline-controlled trans-activator) and GLp65, which are the trans-activators of the doxycyline- and mifepristone-inducible systems, respectively. To this end we performed transcriptomic analysis of mice expressing these trans-activators in the liver over 1 month. rtTA2 expression induced alterations in a few genes (69 gene probesets; false discovery rate [FDR], approximately 0.05), whereas GLp65 caused more numerous changes (1059 gene probe-sets, an FDR of approximately 0.05). However, only 20 and 53 of the genes from the rtTA2 and GLp65 groups, respectively, showed changes (R-fold >or= 3). Functional assignments indicate that alterations were mild and of little general significance. Few additional transcriptomic changes were observed when expressing trans-activators in the presence of inducer drugs; most were due to the drugs themselves. These results and the absence of toxicity observed in treated animals indicate that the two inducible systems are well tolerated and have little impact on the liver transcriptome profile. The milder alterations found with the use of rtTA2 suggest that this system is possibly safer for gene therapy application

    In vitro and in vivo comparative study of chimeric liver-specific promoters

    Get PDF
    Targeting therapeutic genes to the liver is essential to improve gene therapy protocols of hepatic diseases and of some hereditary disorders. Transcriptional targeting can be achieved using liver-specific promoters. In this study we have made chimeric constructs combining promoter and enhancer regions of the albumin, alpha 1-antitrypsin, hepatitis B virus core protein, and hemopexin genes. Tissue specificity, activity, and length of gene expression driven from these chimeric regulatory sequences have been analyzed in cultured cells from hepatic and nonhepatic origin as well as in mice livers and other organs. We have identified a collection of liver-specific promoters whose activities range from twofold to less than 1% of the CMV promoter in human hepatoma cells. We found that the best liver specificity was attained when both enhancer and promoter sequences of hepatic genes were combined. In vivo studies were performed to analyze promoter function during a period of 50 days after gene transfer to the mouse liver. We found that among the various chimeric constructs tested in this work, the alpha1-antitrypsin promoter alone or linked to the albumin or hepatitis B enhancers is the most potent in directing stable gene expression in liver cells

    Increased efficacy and safety in the treatment of experimental liver cancer with a novel adenovirus-alphavirus hybrid vector

    Get PDF
    An improved viral vector for cancer gene therapy should be capable of infecting tumors with high efficiency, inducing specific and high-level expression of transgene in the tumor and selectively destroying tumor cells. In the design of such a vector to treat hepatocellular carcinoma, we took advantage of (a) the high infectivity of adenoviruses for hepatic cells, (b) the high level of protein expression and proapoptotic properties that characterize Semliki Forest virus (SFV) replicon, and (c) tumor selectivity provided by alpha-fetoprotein (AFP) promoter. We constructed a hybrid viral vector composed of a helper-dependent adenovirus containing an SFV replicon under the transcriptional control of AFP promoter and a transgene driven by SFV subgenomic promoter. Hybrid vectors containing murine interleukin-12 (mIL-12) genes or reporter gene LacZ showed very specific and high-level expression of transgenes in AFP-expressing hepatocellular carcinoma cells, both in vitro and in an in vivo hepatocellular carcinoma animal model. Infected hepatocellular carcinoma cells were selectively eliminated due to the induction of apoptosis by SFV replication. In a rat orthotopic liver tumor model, treatment of established tumors with a hybrid vector carrying mIL-12 gene resulted in strong antitumoral activity without accompanying toxicity. This new type of hybrid vectors may provide a potent and safe tool for cancer gene therapy

    An oncolytic adenovirus controlled by a modified telomerase promoter is attenuated in telomerase-negative cells, but shows reduced activity in cancer cells

    No full text
    The promoter for human telomerase reverse transcriptase (hTERTp) is preferentially active in malignant cells. It was recently used to control the expression of the adenoviral E1A gene for the development of oncolytic adenoviruses. To ensure maximal repression in normal cells, the inclusion of additional E-boxes in the proximal region of the core promoter was described. We found that the transcriptional activity of this artificial sequence (T-255-4DEB) is minimal in normal cells, but it is also reduced in all the cancer cell lines tested. The cancer specificity of a new oncolytic adenovirus based in this promoter (AdTE1) was evaluated by direct comparison with wild-type adenovirus type 5 (AdWT) in vitro and in vivo. In all the parameters tested, AdTE1 was attenuated in normal cells, but the efficacy in cancer cells showed a parallel reduction, suggesting a lack of specificity. However, the cytotoxicity of AdTE1 was repressed in senescent cells compared to AdWT. Therefore, we conclude that AdTE1 is preferentially attenuated only in cells that are permanently devoid of telomerase expression such as senescent cells. Further modifications in the telomerase-based promoters should be introduced in order to combine maximal attenuation of oncolytic adenoviruses in normal tissues and enhanced activity in tumors

    In vitro and in vivo comparative study of chimeric liver-specific promoters

    No full text
    Targeting therapeutic genes to the liver is essential to improve gene therapy protocols of hepatic diseases and of some hereditary disorders. Transcriptional targeting can be achieved using liver-specific promoters. In this study we have made chimeric constructs combining promoter and enhancer regions of the albumin, alpha 1-antitrypsin, hepatitis B virus core protein, and hemopexin genes. Tissue specificity, activity, and length of gene expression driven from these chimeric regulatory sequences have been analyzed in cultured cells from hepatic and nonhepatic origin as well as in mice livers and other organs. We have identified a collection of liver-specific promoters whose activities range from twofold to less than 1% of the CMV promoter in human hepatoma cells. We found that the best liver specificity was attained when both enhancer and promoter sequences of hepatic genes were combined. In vivo studies were performed to analyze promoter function during a period of 50 days after gene transfer to the mouse liver. We found that among the various chimeric constructs tested in this work, the alpha1-antitrypsin promoter alone or linked to the albumin or hepatitis B enhancers is the most potent in directing stable gene expression in liver cells
    corecore