15 research outputs found

    Sub-chronic toxicity study in rats orally exposed to nanostructured silica

    Get PDF
    Synthetic Amorphous Silica (SAS) is commonly used in food and drugs. Recently, a consumer intake of silica from food was estimated at 9.4 mg/kg bw/day, of which 1.8 mg/kg bw/day was estimated to be in the nano-size range. Food products containing SAS have been shown to contain silica in the nanometer size range (i.e. 5 – 200 nm) up to 43% of the total silica content. Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured silica

    The Future of Psychopharmacological Enhancements: Expectations and Policies

    Get PDF
    The hopes and fears expressed in the debate on human enhancement are not always based on a realistic assessment of the expected possibilities. Discussions about extreme scenarios may at times obscure the ethical and policy issues that are relevant today. This paper aims to contribute to an adequate and ethically sound societal response to actual current developments. After a brief outline of the ethical debate concerning neuro-enhancement, it describes the current state of the art in psychopharmacological science and current uses of psychopharmacological enhancement, as well as the prospects for the near future. It then identifies ethical issues regarding psychopharmacological enhancements that require attention from policymakers, both on the professional and on the governmental level. These concern enhancement research, the gradual expansion of medical categories, off-label prescription and responsibility of doctors, and accessibility of enhancers on the Internet. It is concluded that further discussion on the advantages and drawbacks of enhancers on a collective social level is still needed

    Factors influencing cDNA microarray hybridization on silylated glass slides

    No full text
    cDNA microarray technology is becoming the technique of choice for studying gene expression and gene expression patterns. Although experimental protocols are available, only limited methodological information on microarray manufacture, hybridization, and signal interpretation has been published. The aim of this paper is to provide more insight into the practical aspects of microarray construction and hybridization. The influence of the size, composition, and concentration of the spotted DNA fragments on the final hybridization signal and the effect of hybridization volume, sample concentration, and sample depletion have been tested and are discusse

    Bioaccessibility of vitamin A, vitamin C and folic acid from dietary supplements fortified food and infant formula

    No full text
    In the Netherlands, vitamin intake occurs mainly via food and for some vitamins also via fortified food. In addition, some people take dietary supplements. Information on the bioavailability of vitamins is important for a good estimation of the actual exposure to vitamins. Furthermore, for a reliable intake estimation, it is important to know the accurateness of the claimed vitamin concentration on the product label. In the current study, the amount of vitamin A, vitamin C, and folic acid in different products and their maximum bioavailability (bioaccessibility) were investigated. In about half of the products, the amount of vitamins significantly deviated from the declared amounts. The vitamin bioaccessibility ranged fro

    Gene expression response of the rat small intestine following oral salmonella infection

    No full text
    Data on the molecular response of the intestine to the food-borne pathogen Salmonella are derived from in vitro studies, whereas in vivo data are lacking. We performed an oral S. enteritidis infection study in Wistar rats to obtain insight in the in vivo response in time. Expression profiles of ileal mucosa (IM) and Peyer's patches (PP) were generated using DNA microarrays at days 1, 3, and 6 postinfection. An overview of Salmonella-regulated processes was obtained and confirmed by quantitative real-time PCR on pooled and individual samples. Salmonella-induced gene expression responses in vivo are fewer and smaller than observed in vitro, and the response develops over a longer period of time. Few effects are seen at day 1 and mainly occur in IM, suggesting the mucosa as the primary site of invasion. Later, a bigger response is observed, especially in PP. Decreased expression of anti-microbial peptides genes (in IM at day 1) suggests inhibition of this process by Salmonella. Newly identified target processes are carbohydrate transport (increased expression in IM at day 1) and phase I and phase II detoxification (decreased expression at days 3 and 6). Increase of cytokine and chemokine expression occurs at later time points, both in PP and IM. Pancreatitis-associated protein, lipocalin 2, and calprotectin, potential inflammatory marker proteins, showed induced expression from day 3 onward. We conclude that the in vivo gene expression response of the ileum to Salmonella differs to a large extent from the response seen in vitro

    Assessment of representational difference analysis (RDA) to construct informative cDNA microarrays for gene expression analysis of species with limited transcriptome information, using red and green tomatoes as a model

    No full text
    Microarray technology makes it feasible to analyse the expression of thousands of different gene elements in a single experiment. Most informative are 'whole genome' arrays, where all gene expression products of a single species or variety are represented. Such arrays are now available for a limited number of model species. However, for other, less well-documented species other routes are still necessary to obtain informative arrays. This includes the use of cDNA libraries. To enhance the amount of information that can be obtained from cDNA libraries, redundancy needs to be minimised, and the number of cDNAs relevant for the conditions of interest needs to be increased. Here, we used representational difference analysis (RDA), a mRNA subtraction procedure, as a tool to enhance the efficiency of cDNA libraries to be used to generate microarrays. Tomato was chosen as a model system for a less well-documented species. cDNA libraries for two distinct physiological conditions of tomato fruits, red and green, were made. The libraries were characterized by sequencing and hybridisation analysis. The RDA procedure was shown to be effective in selecting for genes of relevance for the physiological conditions under investigation, and against constitutively expressed genes. At the same time, redundancy was reduced, but complete normalisation was not obtained, and subsequent sequence analysis will be required to obtain non-redundant arrays. Further, known and putative ripening-related cDNAs were identified in hybridisation experiments on the basis of RNA populations as isolated from the green and red stage of ripening

    In vitro gastrointestinal digestion increases the translocation of polystryrene nanoparticles in an in vitro intestinal co-culture model

    No full text
    The conditions of the gastrointestinal tract may change the physicochemical properties of nanoparticles (NPs) and therewith the bioavailability of orally taken NPs. Therefore, we assessed the impact of in vitro gastrointestinal digestion on the protein corona of polystyrene NPs (PS-NPs) and their subsequent translocation across an in vitro intestinal barrier. A co-culture of intestinal Caco-2 and HT29-MTX cells was exposed to 50¿nm PS-NPs of different charges (positive and negative) in two forms: pristine and digested in an in vitro gastrointestinal digestion model. In vitro digestion significantly increased the translocation of all, except the “neutral”, PS-NPs. Upon in vitro digestion, translocation was 4-fold higher for positively charged NPs and 80- and 1.7-fold higher for two types of negatively charged NPs. Digestion significantly reduced the amount of protein in the corona of three out of four types of NPs. This reduction of proteins was 4.8-fold for “neutral”, 3.5-fold for positively charged and 1.8-fold for one type of negatively charged PS-NPs. In vitro digestion also affected the composition of the protein corona of PS-NPs by decreasing the presence of higher molecular weight proteins and shifting the protein content of the corona to low molecular weight proteins. These findings are the first to report that in vitro gastrointestinal digestion significantly affects the protein corona and significantly increases the in vitro translocation of differently charged PS-NPs. These findings stress the importance of including the in vitro digestion in future in vitro intestinal translocation screening studies for risk assessment of orally taken NPs

    Mucosal pentraxin (Mptx), a novel rat gene 10-fold down-regulated in colon by dietary heme

    No full text
    Consumption of red meat is associated with increased colon cancer risk. Our previous work indicated that this association might be due to the heme content of red meat. In rat studies, dietary heme increased colonic cytotoxicity and epithelial cell turnover, carcinogenesis biomarkers. Here we apply DNA microarray technology to examine effects of heme on colonic gene expression. A rat colon-specific microarray was constructed and hybridized in duplicate to RNA extracts from colon scrapings of rats fed diets with or without heme (n=6¿7). We were able to reproducibly identify changes in colonic mRNA abundance in response to heme. Most striking was a >10-fold down-regulation of a single rat gene, an unprecedented gene-modulating effect of a dietary component. Based on homology, the novel gene encodes a pentraxin, the first identified in colon. Pentraxins are postulated to be involved in dealing with dying cells. Quantitative PCR confirmed the strong heme-induced down-regulation of this gene, which we named mucosal pentraxin (Mptx). Overall, our data support the efficacy of cDNA array expression profiling to investigate effects of specific nutrients in an in vivo system and may provide an approach to establishing markers for diet-induced stress of mammalian colonic mucosa.¿van der Meer-van Kraaij, C., van Lieshout, E. M. M., Kramer, E., van der Meer, R., Keijer, J. Mucosal pentraxin (Mptx), a novel rat gene 10-fold down-regulated in colon by dietary heme

    Mucosal pentraxin (Mptx), a novel rat gene 10-fold down-regulated in colon by dietary heme

    No full text
    Consumption of red meat is associated with increased colon cancer risk. Our previous work indicated that this association might be due to the heme content of red meat. In rat studies, dietary heme increased colonic cytotoxicity and epithelial cell turnover, carcinogenesis biomarkers. Here we apply DNA microarray technology to examine effects of heme on colonic gene expression. A rat colon-specific microarray was constructed and hybridized in duplicate to RNA extracts from colon scrapings of rats fed diets with or without heme (n=6¿7). We were able to reproducibly identify changes in colonic mRNA abundance in response to heme. Most striking was a >10-fold down-regulation of a single rat gene, an unprecedented gene-modulating effect of a dietary component. Based on homology, the novel gene encodes a pentraxin, the first identified in colon. Pentraxins are postulated to be involved in dealing with dying cells. Quantitative PCR confirmed the strong heme-induced down-regulation of this gene, which we named mucosal pentraxin (Mptx). Overall, our data support the efficacy of cDNA array expression profiling to investigate effects of specific nutrients in an in vivo system and may provide an approach to establishing markers for diet-induced stress of mammalian colonic mucosa.¿van der Meer-van Kraaij, C., van Lieshout, E. M. M., Kramer, E., van der Meer, R., Keijer, J. Mucosal pentraxin (Mptx), a novel rat gene 10-fold down-regulated in colon by dietary heme

    Digestibility and absorption of deoxynivalenol-3-ß-glucoside in in vitro models

    No full text
    Certain mycotoxins may be present in plant materials as their glucosides. The question is whether these glucosides may be hydrolysed into their parent compounds in the gastro-intestinal tract (GI-tract), thus increasing the exposure. Therefore, the potential hydrolysis of deoxynivalenol-3-ß-glucoside (DON-3G) to deoxynivalenol (DON) was assessed in two in vitro models representing the human upper GI-tract (mouth, stomach and small intestine). In a fed digestion model, there was no evidence of release of DON from DON-3G, spiked at a level of 2,778 µg DON- 3G/kg food. This shows that the conditions in the GI-tract do not result in hydrolysis of this glucoside into the original mycotoxin. The absorption and transformation of DON-3G in the small intestine was assessed in an in vitro model with human Caco-2 cells in a Transwell system. No evidence was found for the transformation of DON-3G to DON by the Caco-2 cells in both the apical or basolateral side in 24 hours (cells were exposed to 2.4 nmol DON- 3G/ml medium). However, when DON itself was added to the apical side an amount of 23% of the spiked DON was detected in the basolateral side after 24 hours (cells were exposed to 2.3 nmol/ml medium). In conclusion, no evidence was found in the in vitro experiments for significant elevated exposure of humans to DON, since DON- 3G was not hydrolysed to DON in the digestion model representing the upper part of the GI-tract and DON-3G was not hydrolysed to DON by the intestinal epithelial Caco-2 cells. It was shown that bioavailability of DON-3G in humans may be low as compared to DON since Caco-2 cells did not absorb DON-3G, in contrast to DON
    corecore