37 research outputs found
Interaction of SET domains with histones and nucleic acid structures in active chromatin
Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modifications—the inheritable “histone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the “SET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions
The morphological adaptation of Lithocodium aggregatum Elliott (calcareous green alga) to cryptic microhabitats (Lower Aptian, Spain): an example of phenotypic plasticity
Exposure to nature versus relaxation during lunch breaks and recovery from work: development and design of an intervention study to improve workers’ health, well-being, work performance and creativity
Molecular relationships of New Guinean three-striped dasyures, (Myoictis, Marsupialia: dasyuridae)
Complete nucleotide sequences of the cytochrome b and 12S rRNA genes and partial sequences of the mitochondrial 16S rRNA gene and the nuclear ε-globin gene were obtained from multiple exemplars of the New Guinean dasyurid, Myoictis. Allozyme data were also obtained from most of the same animals. The molecular data show that the genus comprises a number of genetically distinct lineages which correspond with groups proposed by Woolley (2005) on the basis of a number of morphological traits, including the form of the tail i.e. Myoictis leucura (sp. nov.), M. melas, M. wallacei and M. wavicus (new status). Divergence dates estimated from the weighted-average distances for the combined cytochrome b and 12S rRNA data, calibrated with a dasyurid-thylacine divergence 25 million years ago, suggest that the early cladogenic events separating Myoictis took place in the late Miocene. Subsequent separation of M. wavicus and M. leucura from a common ancestor as well as some genetic differentiation within M. melas, took place in the medial Pliocene. © Springer Science+Business Media, LLC 2006.Michael Westerman, Jodie Young, Steve Donnellan, Patricia A. Woolley, Carey Krajewsk
In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury
The Bcl-2 homology (BH) domain 3-only proteins are a proapoptotic subgroup of the Bcl-2 gene family, which regulate cell death via effects on mitochondria. The BH3-only proteins react to various cell stressors and promote cell death by binding and inactivating antiapoptotic Bcl-2 family members and direct activation of proapoptotic multi-BH domain proteins such as Bax. Here, we review the in vivo evidence for their involvement in the pathophysiology of status epilepticus and contrast it to ischemia and traumatic brain injury. Seizures in rodents activate three potent proapoptotic BH3-only proteins: Bid, Bim, and Puma. Analysis of damage after seizures in mice singly deficient for each BH3-only protein supports a causal role for Puma and to a lesser extent Bim but, surprisingly, not Bid. In ischemia and trauma, where core aspects of the pathophysiology of cell death overlap, multiple BH3-only proteins are also activated and Bid has been shown to be required for neuronal death. The findings suggest that while each neurologic insult activates multiple BH3-only proteins, there may be specificity in their functional contribution. Future challenges include evaluating the remaining BH3-only proteins, explaining different causal contributions, and, if possible, exploring neurologic outcomes in mouse models deficient for multiple BH3-only proteins
Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy
Spatial clustering of Diabrotica virgifera virgifera and Agriotes ustulatus in small-scale maize fields without topographic relief drift
Highly sensitive pyrogen detection on medical devices by the monocyte activation test
Pyrogens are components of microorganisms, like bacteria, viruses or fungi, which can induce a complex inflammatory response in the human body. Pyrogen contamination on medical devices prior operation is still critical and associated with severe complications for the patients. The aim of our study was to develop a reliable test, which allows detection of pyrogen contamination on the surface of medical devices. After in vitro pyrogen contamination of different medical devices and incubation in a rotation model, the human whole blood monocyte activation test (MAT), which is based on an IL-1β-specific ELISA, was employed. Our results show that when combining a modified MAT protocol and a dynamic incubation system, even smallest amounts of pyrogens can be directly detected on the surface of medical devices. Therefore, screening of medical devices prior clinical application using our novel assay, has the potential to significantly reduce complications associated with pyrogen-contaminated medical devices
