3 research outputs found

    [4.3.1]Bicyclic FKBP Ligands Inhibit Legionella Pneumophila Infection by LpMip‐Dependent and LpMip‐Independent Mechanisms

    Get PDF
    Legionella pneumophila is the causative agent of Legionnaires’ disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506‐binding proteins (FKBPs), plays a major role in the proliferation of the gram‐negative bacterium in host organisms. In this work, we test our library of >1000 FKBP‐focused ligands for inhibition of LpMip. The [4.3.1]‐bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non‐toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection‐assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]‐bicyclic sulfonamides as anti‐legionellal agents, although their anti‐infective properties cannot be explained by inhibition of LpMip alone

    [4.3.1] Bicyclic FKBP ligands inhibit Legionella pneumophila infection by LpMip-dependent and LpMip independent mechanisms

    No full text
    Legionella pneumophila is the causative agent of Legionnaires’ disease, a serious form of pneumonia. Its macrophage infectiv-ity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins, plays a major role in the prolifera-tion of the Gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibi-tion of LpMip alone

    Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding

    No full text
    Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires’ disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans- isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full- length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms
    corecore