9 research outputs found

    New constraints from U–Pb dating of detrital zircons on the palaeogeographic origin of metasediments in the Talea Ori, central Crete

    Get PDF
    High-pressure low-temperature metamorphic sediments of the Phyllite–Quartzite unit sensu stricto and the Talea Ori group are investigated in the field, microstructurally and by U–Pb dating of detrital zircons to shed light on their palaeogeographic origin. Zircon age spectra with ages >450 Ma of the Phyllite–Quartzite unit sensu stricto indicate a palaeogeographic origin at the northern margin of East Gondwana. In contrast, the lower stratigraphic, siliciclastic formations of the Talea Ori group show a high number of well-rounded Cambrian to Early Carboniferous aged zircons and a Neoproterozoic zircon age spectrum with East Gondwana affinity. Based on the comparison of zircon age data, a possible distal sediment source is the Sakarya Zone at the southern active margin of Eurasia. To reconcile the zircon data with the geological observations we propose different alternative models, or a combination of these, including sediment transport from the Sakarya Zone and/or a westerly source towards the northern margin of Gondwana as well as terrane-displacement of the Sakarya Zone. Also, a palaeogeographic origin of the Talea Ori group at the southern active margin of Eurasia cannot be excluded. This alternative, however, would not be consistent with the usually assumed association of the Talea Ori group with the Plattenkalk unit characterized by a palaeogeographic origin at the northern margin of Gondwana

    Pathologist-level classification of histopathological melanoma images with deep neural networks

    No full text
    Background: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports 25-26% of discordance for classifying a benign nevus versus malignant melanoma. Deep learning was successfully implemented to enhance the precision of lung and breast cancer diagnoses. The aim of this study is to illustrate the potential of deep learning to assist human assessment for a histopathologic melanoma diagnosis. Methods: Six hundred ninety-five lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi and 345 melanomas). Only the haematoxylin and eosin stained (H&E) slides of these lesions were digitalised using a slide scanner and then randomly cropped. Five hundred ninety-five of the resulting images were used for the training of a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison with the original class labels. Findings: The total discordance with the histopathologist was 18% for melanoma (95% confidence interval [CI]: 7.4-28.6%), 20% for nevi (95% CI: 8.9-31.1%) and 19% for the full set of images (95% CI: 11.3-26.7%). Interpretation: Even in the worst case, the discordance of the CNN was about the same compared with the discordance between human pathologists as reported in the literature. Despite the vastly reduced amount of data, time necessary for diagnosis and cost compared with the pathologist, our CNN archived on-par performance. Conclusively, CNNs indicate to be a valuable tool to assist human melanoma diagnoses. (C) 2019 The Author(s). Published by Elsevier Ltd

    Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images

    No full text
    Background: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-26% of discordance for classifying a benign nevus versus malignant melanoma. A recent study indicated the potential of deep learning to lower these discordances. However, the performance of deep learning in classifying histopathologic melanoma images was never compared directly to human experts. The aim of this study is to perform such a first direct comparison. Methods: A total of 695 lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi/345 melanoma). Only the haematoxylin & eosin (H&E) slides of these lesions were digitalised via a slide scanner and then randomly cropped. A total of 595 of the resulting images were used to train a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison to 11 histopathologists. Three combined McNemar tests comparing the results of the CNNs test runs in terms of sensitivity, specificity and accuracy were predefined to test for significance (p < 0.05). Findings: The CNN achieved a mean sensitivity/specificity/accuracy of 76%/60%/68% over 11 test runs. In comparison, the 11 pathologists achieved a mean sensitivity/specificity/accuracy of 51.8%/66.5%/59.2%. Thus, the CNN was significantly (p = 0.016) superior in classifying the cropped images. Interpretation: With limited image information available, a CNN was able to outperform 11 histopathologists in the classification of histopathological melanoma images and thus shows promise to assist human melanoma diagnoses. (C) 2019 The Author(s). Published by Elsevier Ltd

    Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study

    No full text
    Background: An increasing number of studies within digital pathology show the potential of artificial intelligence (AI) to diagnose cancer using histological whole slide images, which requires large and diverse data sets. While diversification may result in more generalizable AI-based systems, it can also introduce hidden variables. If neural networks are able to distinguish/learn hidden variables, these variables can introduce batch effects that compromise the accuracy of classification systems. Objective: The objective of the study was to analyze the learnability of an exemplary selection of hidden variables (patient age, slide preparation date, slide origin, and scanner type) that are commonly found in whole slide image data sets in digital pathology and could create batch effects. Methods: We trained four separate convolutional neural networks (CNNs) to learn four variables using a data set of digitized whole slide melanoma images from five different institutes. For robustness, each CNN training and evaluation run was repeated multiple times, and a variable was only considered learnable if the lower bound of the 95% confidence interval of its mean balanced accuracy was above 50.0%. Results: A mean balanced accuracy above 50.0% was achieved for all four tasks, even when considering the lower bound of the 95% confidence interval. Performance between tasks showed wide variation, ranging from 56.1% (slide preparation date) to 100% (slide origin). Conclusions: Because all of the analyzed hidden variables are learnable, they have the potential to create batch effects in dermatopathology data sets, which negatively affect AI-based classification systems. Practitioners should be aware of these and similar pitfalls when developing and evaluating such systems and address these and potentially other batch effect variables in their data sets through sufficient data set stratification

    Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours

    No full text
    Aim: Sentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non invasively from digitised H&E slides of primary melanoma tumours. Methods: A total of 415 H&E slides from primary melanoma tumours with known sentinel node (SN) status from three German university hospitals and one private pathological practice were digitised (150 SN positive/265 SN negative). Two hundred ninety-one slides were used to train artificial neural networks (ANNs). The remaining 124 slides were used to test the ability of the ANNs to predict sentinel status. ANNs were trained and/or tested on data sets that were matched or not matched between SN-positive and SN-negative cases for patient age, ulceration, and tumour thickness, factors that are known to correlate with lymph node status. Results: The best accuracy was achieved by an ANN that was trained and tested on unmatched cases (61.8% +/- 0.2%) area under the receiver operating characteristic (AUROC). In contrast, ANNs that were trained and/or tested on matched cases achieved (55.0% +/- 3.5%) AUROC or less. Conclusion: Our results indicate that the image classifier can predict lymph node status to some, albeit so far not clinically relevant, extent. It may do so by mostly detecting equivalents of factors on histological slides that are already known to correlate with lymph node status. Our results provide a basis for future research with larger data cohorts. (C) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts

    No full text
    Background: Multiple studies have compared the performance of artificial intelligence (AI) -based models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinicopathological practice. Objective: The objective of the study was to systematically analyse the current state of research on reader studies involving melanoma and to assess their potential clinical relevance by evaluating three main aspects: test set characteristics (holdout/out-of-distribution data set, composition), test setting (experimental/clinical, inclusion of metadata) and representativeness of participating clini-cians. Methods: PubMed, Medline and ScienceDirect were screened for peer-reviewed studies published between 2017 and 2021 and dealing with AI-based skin cancer classification involving melanoma. The search terms skin cancer classification, deep learning, convolutional neural network (CNN), melanoma (detection), digital biomarkers, histopathology and whole slide imaging were com-bined. Based on the search results, only studies that considered direct comparison of AI results with clinicians and had a diagnostic classification as their main objective were included. Results: A total of 19 reader studies fulfilled the inclusion criteria. Of these, 11 CNN-based ap-proaches addressed the classification of dermoscopic images; 6 concentrated on the classification of clinical images, whereas 2 dermatopathological studies utilised digitised histopathological whole slide images. Conclusions: All 19 included studies demonstrated superior or at least equivalent performance of CNN-based classifiers compared with clinicians. However, almost all studies were conducted in highly artificial settings based exclusively on single images of the suspicious lesions. Moreover, test sets mainly consisted of holdout images and did not represent the full range of patient populations and melanoma subtypes encountered in clinical practice. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore