21 research outputs found

    Effect of a nurse-coordinated prevention programme on cardiovascular risk after an acute coronary syndrome: main results of the RESPONSE randomised trial

    Get PDF
    Objective To quantify the impact of a practical, hospital-based nurse-coordinated prevention programme on cardiovascular risk, integrated into the routine clinical care of patients discharged after an acute coronary syndrome, as compared with usual care only. Design RESPONSE (Randomised Evaluation of Secondary Prevention by Outpatient Nurse SpEcialists) was a randomised clinical trial. Setting Multicentre trial in secondary and tertiary healthcare settings. Participants 754 patients admitted for acute coronary syndrome. Intervention A nurse-coordinated prevention programme, consisting of four outpatient nurse clinic visits, focusing on healthy lifestyles, biometric risk factors and medication adherence, in addition to usual care. Main outcome measures The main outcome was 10-year cardiovascular mortality risk as estimated by Systematic Coronary Risk Evaluation at 12 months follow-up. Secondary outcomes included Framingham Coronary Risk Score at 12 months, in addition to changes in individual risk factors. Risk factor control was classified as ‘poor’ if 0 to 3 factors were on target, ‘fair’ if 4 to 6 factors were on target, and ‘good’ if 7 to 9 were on target. Results The mean Systematic Coronary Risk Evaluation at 12 months was 4.4 per cent (SD 4.5) in the intervention group and 5.4 per cent (SD 6.2) in the control group (p=0.021), representing a 17.4% relative risk reduction. At 12 months, risk factor control classified as ‘good’ was achieved in 35% of patients in the intervention group compared with 25% in the control group (p=0.003). Attendance to the nurse-coordinated prevention programme was 92%. In the intervention group, 86 rehospitalisations were observed against 132 in the control group (relative risk reduction 34.8%, p=0.023). Conclusions The nurse-coordinated hospital-based prevention programme in addition to usual care is a practical, yet effective method for reduction of cardiovascular risk in patients with coronary disease. Our data suggest that the counselling component of the programme may lead to a reduction in hospital readmissions

    A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair

    Get PDF
    Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress. The transcription-coupled repair pathway removes transcription-blocking DNA lesions, but how transcription is restored following DNA repair is not clear. Here the authors reveal that the PAF1 complex, while dispensable for the repair process, restores transcription after DNA damage.Cancer Signaling networks and Molecular Therapeutic

    Bone formation by heterodimers through non-viral gene delivery of BMP-2/6 and BMP-2/7

    No full text
    Non-viral gene delivery is a safe technique to release sustained physiologic dosages of bone morphogenetic protein (BMP). Co-delivery of multiple BMPs can result in the formation of more potent BMP heterodimers. In this study, non-viral co-delivery of BMP-2/6 and BMP-2/7, as a means to produce heterodimers, was assessed. Goat MSCs were non-virally transfected with plasmid DNA encoding BMP isoforms (pBMP) known to be relevant for osteogenesis: BMP-2,-6 or-7. As a result, BMP-2,-6 and-7 were produced and detectable for up to 14 d and their combined delivery (pBMP-2 with pBMP-6 or pBMP-7) was used to create BMP-2/6 and BM-2/7 heterodimers. Formation and secretion of the heterodimer proteins was validated by sandwich enzyme-linked immunosorbent assay (ELISA). Produced BMPs and heterodimers were biologically active, as confirmed by differentiation of reporter cells and MSCs. To assess bone formation, transfected MSCs were seeded on to ceramic scaffolds and implanted subcutaneously into nude mice. Bone formation was significantly enhanced in the pBMP-2/6 condition and a trend for more bone formation was observed in the pBMP-2/7 and pBMP-6 homodimer condition. No bone was found in the pBMP-2, pBMP-7 or control condition. In conclusion, simultaneous delivery of pBMP-2 with pBMP-6 or-7 resulted in the production of heterodimers that were beneficial for bone formation as compared to BMP homodimers. Combination of BMP sequences could reduce the need for high BMP protein dosages and might enhance prolonged availability of the growth factors

    Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft X-ray scattering

    No full text
    Long-wavelength spin spiral structures are ubiquitous in a large variety of magnetic materials. The detailed magnetic structure can take many variations owing to their different physical origins. Therefore, the unambiguous structural determination is crucial for understanding these spin systems, though such a task is experimentally challenging. Here we show that ordered spin spiral structures can be fully determined in a single measurement by dichroic resonant elastic x-ray scattering using circularly polarized light. It is found that at certain geometrical conditions, the circular dichroism of the diffraction vanishes completely, revealing a one-to-one correspondence with the spin structure. We demonstrate both theoretically and experimentally this experimental principle, which allows for unambiguous structure determination immediately from the measured signal, whereby no modeling- based data refinement is needed. This largely expands the capabilities of conventional magnetic characterization techniques

    BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration

    No full text
    To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods

    BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration

    No full text
    To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods
    corecore