6,302 research outputs found

    Buoyancy-driven inflow to a relic cold core: the gas belt in radio galaxy 3C 386

    Get PDF
    We report measurements from an XMM-Newton observation of the low-excitation radio galaxy 3C 386. The study focusses on an X-ray-emitting gas belt, which lies between and orthogonal to the radio lobes of 3C 386 and has a mean temperature of 0.94±0.050.94\pm0.05 keV, cooler than the extended group atmosphere. The gas in the belt shows temperature structure with material closer to the surrounding medium being hotter than gas closer to the host galaxy. We suggest that this gas belt involves a `buoyancy-driven inflow' of part of the group-gas atmosphere where the buoyant rise of the radio lobes through the ambient medium has directed an inflow towards the relic cold core of the group. Inverse-Compton emission from the radio lobes is detected at a level consistent with a slight suppression of the magnetic field below the equipartition value.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Kelvin-Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective ICM viscosity

    Full text link
    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intra-cluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and north-east of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities ≳\gtrsim 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e. in the presence or absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.Comment: Accepted for ApJ; 15 pages, 11 figures. A movie can be found here: http://www.hs.uni-hamburg.de/DE/Ins/Per/Roediger/research.html#Virgo-viscou

    Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation

    Get PDF
    6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe

    Viscous Kelvin-Helmholtz instabilities in highly ionised plasmas

    Get PDF
    Transport coefficients in highly ionised plasmas like the intra-cluster medium (ICM) are still ill-constrained. They influence various processes, among them the mixing at shear flow interfaces due to the Kelvin-Helmholtz instability (KHI). The observed structure of potential mixing layers can be used to infer the transport coefficients, but the data interpretation requires a detailed knowledge of the long-term evolution of the KHI under different conditions. Here we present the first systematic numerical study of the effect of constant and temperature-dependent isotropic viscosity over the full range of possible values. We show that moderate viscosities slow down the growth of the KHI and reduce the height of the KHI rolls and their rolling-up. Viscosities above a critical value suppress the KHI. The effect can be quantified in terms of the Reynolds number Re = U{\lambda}/{\nu}, where U is the shear velocity, {\lambda} the perturbation length, and {\nu} the kinematic viscosity. We derive the critical Re for constant and temperature dependent, Spitzer-like viscosities, an empirical relation for the viscous KHI growth time as a function of Re and density contrast, and describe special behaviours for Spitzer-like viscosities and high density contrasts. Finally, we briefly discuss several astrophysical situations where the viscous KHI could play a role, i.e., sloshing cold fronts, gas stripping from galaxies, buoyant cavities, ICM turbulence, and high velocity clouds.Comment: Accepted by MNRAS. 22 pages, 21 figure

    The Disturbed 17 keV Cluster Associated with the Radio Galaxy 3C 438

    Full text link
    We present results from a {\em Chandra} observation of the cluster gas associated with the FR II radio galaxy 3C 438. This radio galaxy is embedded within a massive cluster with gas temperature ∼\sim17 keV and bolometric luminosity of 6×1045\times10^{45} ergs s−1^{-1}. It is unclear if this high temperature represents the gravitational mass of the cluster, or if this is an already high (∼\sim 11 keV) temperature cluster that has been heated transiently. We detect a surface brightness discontinuity in the gas that extends ∼\sim600 kpc through the cluster. The radio galaxy 3C 438 is too small (∼\sim110 kpc across) and too weak to have created this large disturbance in the gas. The discontinuity must be the result of either an extremely powerful nuclear outburst or the major merger of two massive clusters. If the observed features are the result of a nuclear outburst, it must be from an earlier epoch of unusually energetic nuclear activity. However, the energy required (∼1063\sim10^{63} ergs) to move the gas on the observed spatial scales strongly supports the merger hypothesis. In either scenario, this is one of the most extreme events in the local Universe.Comment: 13 pages, 4 figures, 1 table - accepted for publication in the Astrophysical Journal Letter

    WATCAT: a tale of wide-angle tailed radio galaxies

    Full text link
    We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT; these galaxies were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS), and mainly built including a radio morphological classification. We included in the catalog only radio sources showing two-sided jets with two clear "warmspots" (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z ≤\leq 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (-20.5 ≳\gtrsim Mr ≳\gtrsim -23.7), red early-type galaxies with black hole masses in the range 108≲10^8\lesssim MBH≲109_{\rm BH} \lesssim 10^9 M⊙_\odot. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FRI and FRII radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FRI radio galaxies, having radio power of typical FRIIs
    • …
    corecore