564 research outputs found

    Unmasking silent neurotoxicity following developmental exposure to environmental toxicants

    Get PDF
    AbstractSilent neurotoxicity, a term introduced approximately 25years ago, is defined as a persistent change to the nervous system that does not manifest as overt evidence of toxicity (i.e. it remains clinically unapparent) unless unmasked by experimental or natural processes. Silent neurotoxicants can be challenging for risk assessors, as the multifactorial experiments needed to reveal their effects are seldom conducted, and they are not addressed by current study design guidelines. This topic was the focus of a symposium addressing the interpretation and use of silent neurotoxicity data in human health risk assessments of environmental toxicants at the annual meeting of the Developmental Neurotoxicology Society (previously the Neurobehavioral Teratology Society) on June 30th, 2014. Several factors important to the design and interpretation of studies assessing the potential for silent neurotoxicity were discussed by the panelists and audience members. Silent neurotoxicity was demonstrated to be highly specific to the characteristics of the animals being examined, the unmasking agent tested, and the behavioral endpoint(s) evaluated. Overall, the experimental examples presented highlighted a need to consider common adverse outcomes and common biological targets for chemical and non-chemical stressors, particularly when the exposure and stressors are known to co-occur. Risk assessors could improve the evaluation of silent neurotoxicants in assessments through specific steps from researchers, including experiments to reveal the molecular targets and mechanisms that may result in specific types of silent neurotoxicity, and experiments with complex challenges reminiscent of the human situation

    Knowledge Organization Systems for Systematic Chemical Assessments

    Get PDF
    BACKGROUND: Although the implementation of systematic review and evidence mapping methods stands to improve the transparency and accuracy of chemical assessments, they also accentuate the challenges that assessors face in ensuring they have located and included all the evidence that is relevant to evaluating the potential health effects an exposure might be causing. This challenge of information retrieval can be characterized in terms of "semantic" and "conceptual" factors that render chemical assessments vulnerable to the streetlight effect. OBJECTIVES: This commentary presents how controlled vocabularies, thesauruses, and ontologies contribute to overcoming the streetlight effect in information retrieval, making up the key components of Knowledge Organization Systems (KOSs) that enable more systematic access to assessment-relevant information than is currently achievable. The concept of Adverse Outcome Pathways is used to illustrate what a general KOS for use in chemical assessment could look like. DISCUSSION: Ontologies are an underexploited element of effective knowledge organization in the environmental health sciences. Agreeing on and implementing ontologies in chemical assessment is a complex but tractable process with four fundamental steps. Successful implementation of ontologies would not only make currently fragmented information about health risks from chemical exposures vastly more accessible, it could ultimately enable computational methods for chemical assessment that can take advantage of the full richness of data described in natural language in primary studies. https://doi.org/10.1289/EHP6994

    Effective connectivity measured using optogenetically evoked hemodynamic signals exhibits topography distinct from resting state functional connectivity in the mouse

    Get PDF
    Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain\u27s structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity

    Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke

    Get PDF
    Understanding circuit-level manipulations that affect the brain\u27s capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles
    • …
    corecore