19 research outputs found

    Mining the Local Volume

    Full text link
    After recent systematic optical, IR, and HI surveys, the total number of known galaxies within 10 Mpc has increased from 179 to 550. About half this Local Volume (LV) sample is now been imaged with HST, yielding the galaxy distances with an accuracy of about 8%. For the majority of the LV galaxies we currently have H-alpha fluxes that allow us to reconstruct the star formation history of our neighbourhood. For the late-type LV galaxies their HI masses and angular momentum follow the linear relation in the range of 4 orders, which is expected for rotating gaseous disks being near the gravitational instability threshold. The data obtained on the LV galaxies imply important cosmological parameters, in particular, the mean local matter density and HI mass density, as well as SFR density. Surprisingly, the local Hubble flow around the LV groups is very quiet, with 1D rms deviations of 25 km/s,which is a signature of the Universe vacuum-dominated on small scales. The cold infall pattern around nearby groups provides us with a new method to determine the total mass of the groups independent from virial mass estimates.Comment: 10 pages, 6 figures, proceedings Symposium "Galaxies in the Local Volume", Sydney, 8 - 13 July 2007, B. Koribalski and H. Jerjen, ed

    The Local Velocity Anomaly

    Full text link
    There is a velocity discontinuity at about 7 Mpc between the galaxies of the Local Sheet that are moving together with low internal velocity dispersion and the adjacent structures. The Local Sheet bounds the Local Void. The Local Sheet is determined to have a peculiar velocity of 260 km/s away from the center of the void. In order for this large velocity to be generated by an absence of gravity, the Local Void must be at least 45 Mpc in diameter and be very empty.Comment: Invited review, "Galaxies in the Local Volume", Sydney, 8-13 July, 2007. eds. B. Koribalski & H. Jerjen, Astrophys. & Space Sci. Proceed. 10 pages with 7 figure

    The MeerKAT Fornax Survey

    Get PDF
    We present the science case and observations plan of the MeerKAT Fornax Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be carried out with the SKA precursor MeerKAT. Fornax is the second most massive cluster within 20 Mpc and the largest nearby cluster in the southern hemisphere. Its low X-ray luminosity makes it representative of the environment where most galaxies live and where substantial galaxy evolution takes place. Fornax's ongoing growth makes it an excellent laboratory for studying the assembly of clusters, the physics of gas accretion and stripping in galaxies falling in the cluster, and the connection between these processes and the neutral medium in the cosmic web. We will observe a region of 12 deg2 reaching a projected distance of 1.5 Mpc from the cluster centre. This will cover a wide range of environment density out to the outskirts of the cluster, where gas-rich in-falling groups are found. We will: study the HI morphology of resolved galaxies down to a column density of a few times 1e+19 cm−2 at a resolution of 1 kpc; measure the slope of the HI mass function down to M(HI) 5e+5 M(sun); and attempt to detect HI in the cosmic web reaching a column density of 1e+18 cm−2 at a resolution of 10 kpc

    An overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with HI masses from 10^6 to ~10^{11} M_sun, and luminosities from M_R ~ -12 to M_R ~ -22. The sample is selected to uniformly cover the available range in log(M_HI). Our extremely deep observations, down to HI column density limits of well below 10^{18} cm^{-2} - or a few hundred times fainter than the typical HI disks in galaxies - will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modelling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT's capabilities

    Allan Sandage and the Cosmic Expansion

    Full text link
    This is an account of Allan Sandage's work on (1) The character of the expansion field. For many years he has been the strongest defender of an expanding Universe. He later explained the CMB dipole by a local velocity of 220 +/- 50 km/s toward the Virgo cluster and by a bulk motion of the Local supercluster (extending out to ~3500 km/s) of 450-500 km/s toward an apex at l=275, b=12. Allowing for these streaming velocities he found linear expansion to hold down to local scales (~300 km/s). (2) The calibration of the Hubble constant. Probing different methods he finally adopted - from Cepheid-calibrated SNe Ia and from independent RR Lyr-calibrated TRGBs - H_0 = 62.3 +/- 1.3 +/- 5.0 km/s/Mpc.Comment: 12 pages, 11 figures, 1 table, Submitted to Astrophysics and Space Science, Special Issue on the Fundamental Cosmic Distance Scale in the Gaia Er

    LADUMA: looking at the distant universe with the MeerKAT array

    Get PDF
    The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    H I-observations of galaxies in the zone of avoidance in Puppis

    No full text
    76 apparently faint galaxies in the galactic plane in Puppis (1 almost-equal-to 245-degrees, Absolute value of b &lt;+/- 8-degrees) were observed with the 100 m radio telescope in Effelsberg. The detection rate is quite high (38 certain, 1 confused and 4 possible detections). It depends neither on galactic latitude nor on magnitude, underscoring the fact that H I-line measurements are indeed a powerful method of obtaining redshifts for highly obscured spiral galaxies. Rough corrections of the magnitudes for extinction show that most of the galaxies are actually quite bright ([m(B)0] less-than-or-equal-to 14.5m). The majority of the galaxies were detected at fairly low velocities (v0 &lt;3000 km s-1. These are concentrated in four groups. The most massive one (at v0 almost-equal-to 1450 km s-1) turns out to form part of a wall that crosses the galactic plane vertically. These newly disclosed nearby groups and filaments might contribute to the peculiar motion of the Local Group. A more distant filament at v0 almost-equal-to 5000 km s-1 is indicated in the distribution as well and seems connected to outlying extragalactic large-scale structures.The global properties of the observed galaxies such as total mass, H I-mass and M(H I)/L(B) are normal in every respect and reflect the properties of a typical nearby sample of galaxies. The infrared properties of the 34 galaxies listed in the IRAS PSC such as the f100/f60 color temperature and the ratio of the blue to infrared flux are found to be representative of an optically selected galaxy sample [[log(f100/f60)] = 0.53, [log (L(FIR)/L(B)0)]= -0.34], and the infrared luminosity L(FIR) to correlate with the H I-mass.</p

    H I line observations of 2MASS galaxies in the zone of avoidance

    Get PDF
    Aims: A pilot survey has been made to obtain 21 cm H i emission line profiles for 197 objects in the zone of avoidance (ZoA) that were classified as galaxies in the 2MASS all-sky near-infrared Extended Source Catalog (2MASX), as well as a further 16 2MASS pre-release working database sources that did not make it into 2MASX. Methods: One hundred sixteen of the 2MASX sources and the 16 working database sources were observed using the Nançay radio telescope, usually in the 325 to 11 825 km s-1 range, and the other 81 2MASX sources were observed with the Arecibo radio telescope in the -500 to 11 000 km s-1 range, and for 9 also in the 9500 to 21 000 km s-1 range. Results: Global H i line parameters are presented for the 22 and 29 2MASX objects that were detected at Nançay and Arecibo, respectively, as well as upper limits for the undetected 2MASX objects. Another galaxy (ESO 371-27) was detected in the Nançay beam centred on an undetected target, ESO 371-26. Nançay data on 12 sources could not be used due to high rms noise levels, most likely caused by strong nearby continuum sources. None of the 16 working database sources were detected at Nançay. Whereas object 2MASX J08170147-3410277 appears to be a very massive galaxy with an H i mass of 4.6 × 1010 {M}ÈŻ and an inclination-corrected rotation velocity of 314 km s-1, it is clear that only radio synthesis H i imaging observations will allow a firm conclusion on this. Conclusions: Overall, the global properties of the detected galaxies match those of other ZoA H i surveys. Although the detections are as yet too sparse to give further insight into suspected or unknown large-scale structures in the ZoA, they already indicate that an extension of the present pilot survey is bound to quantify filaments, clusters, and voids behind this part of the Milky Way. It is shown that the number of candidate 2MASS-selected ZoA galaxies to be observed in H i could have been reduced by about 15% through examination of composite near-infrared images and the application of extinction-corrected near-infrared colour limits. Present results confirm that the Galactic extinction values from Schlegel et al. (1998) are valid for latitudes |b| âȘ† 5°, but increasingly less so for lower latitudes. Tables 1, 2, 4 and 5 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/29 Tables 3, 6, 7, and spectra in FITS format are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/2
    corecore