8 research outputs found

    Surgical Outcome of Children with a Malignant Liver Tumour in The Netherlands:A Retrospective Consecutive Cohort Study

    Get PDF
    INTRODUCTION: Six to eight children are diagnosed with a malignant liver tumour yearly in the Netherlands. The majority of these tumours are hepatoblastoma (HB) and hepatocellular carcinoma (HCC), for which radical resection, often in combination with chemotherapy, is the only curative treatment option. We investigated the surgical outcome of children with a malignant liver tumour in a consecutive cohort in the Netherlands. METHODS: In this nationwide, retrospective observational study, all patients (age < 18 years) diagnosed with a malignant liver tumour, who underwent partial liver resection or orthotopic liver transplantation (OLT) between January 2014 and April 2021, were included. Children with a malignant liver tumour who were not eligible for surgery were excluded from the analysis. Data regarding tumour characteristics, diagnostics, treatment, complications and survival were collected. Outcomes included major complications (Clavien-Dindo ≥ 3a) within 90 days and disease-free survival. The results of the HB group were compared to those of a historical HB cohort. RESULTS: Twenty-six children were analysed, of whom fourteen (54%) with HB (median age 21.5 months), ten (38%) with HCC (median age 140 months) and one with sarcoma and a CNSET. Thirteen children with HB (93%) and three children with HCC (30%) received neoadjuvant chemotherapy. Partial hepatic resection was possible in 19 patients (12 HB, 6 HCC, and 1 sarcoma), whilst 7 children required OLT (2 HB, 4 HCC, and 1 CNSET). Radical resection (R0, margin ≥ 1.0 mm) was obtained in 24 out of 26 patients, with recurrence only in the patient with CNSET. The mean follow-up was 39.7 months (HB 40 months, HCC 40 months). Major complications occurred in 9 out of 26 patients (35% in all, 4 of 14, 29% for HB). There was no 30- or 90-day mortality, with disease-free survival after surgery of 100% for HB and 80% for HCC, respectively. Results showed a tendency towards a better outcome compared to the historic cohort, but numbers were too small to reach significance. CONCLUSION: Survival after surgical treatment for malignant liver tumours in the Netherlands is excellent. Severe surgical complications arise in one-third of patients, but most resolve without long-term sequelae and have no impact on long-term survival

    Iodine-131-meta-iodobenzylguanidine therapy for patients with newly diagnosed high-risk neuroblastoma

    No full text
    Patients with newly diagnosed high-risk (HR) neuroblastoma (NBL) still have a poor outcome, despite multi-modality intensive therapy. This poor outcome necessitates the search for new therapies, such as treatment with (131)I-meta-iodobenzylguanidine ((131)I-MIBG). To assess the efficacy and adverse effects of (131)I-MIBG therapy in patients with newly diagnosed HR NBL. We searched the following electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library 2016, Issue 3), MEDLINE (PubMed) (1945 to 25 April 2016) and Embase (Ovid) (1980 to 25 April 2016). In addition, we handsearched reference lists of relevant articles and reviews. We also assessed the conference proceedings of the International Society for Paediatric Oncology, Advances in Neuroblastoma Research and the American Society of Clinical Oncology; all from 2010 up to and including 2015. We scanned the International Standard Randomized Controlled Trial Number (ISRCTN) Register (www.isrctn.com) and the National Institutes of Health Register for ongoing trials (www.clinicaltrials.gov) on 13 April 2016. Randomised controlled trials (RCTs), controlled clinical trials (CCTs), non-randomised single-arm trials with historical controls and cohort studies examining the efficacy of (131)I-MIBG therapy in 10 or more patients with newly diagnosed HR NBL. Two review authors independently performed the study selection, risk of bias assessment and data extraction. We identified two eligible cohort studies including 60 children with newly diagnosed HR NBL. All studies had methodological limitations, with regard to both internal (risk of bias) and external validity. As the studies were not comparable with regard to prognostic factors and treatment (and often used different outcome definitions), pooling of results was not possible. In one study, the objective response rate (ORR) was 73% after surgery; the median overall survival was 15 months (95% confidence interval (CI) 7 to 23); five-year overall survival was 14.6%; median event-free survival was 10 months (95% CI 7 to 13); and five-year event-free survival was 12.2%. In the other study, the ORR was 56% after myeloablative therapy and autologous stem cell transplantation; 10-year overall survival was 6.25%; and event-free survival was not reported. With regard to short-term adverse effects, one study showed a prevalence of 2% (95% CI 0% to 13%; best-case scenario) for death due to myelosuppression. After the first cycle of (131)I-MIBG therapy in one study, platelet toxicity occurred in 38% (95% CI 18% to 61%), neutrophil toxicity in 50% (95% CI 28% to 72%) and haemoglobin toxicity in 69% (95% CI 44% to 86%); after the second cycle this was 60% (95% CI 36% to 80%) for platelets and neutrophils and 53% (95% CI 30% to 75%) for haemoglobin. In one study, the prevalence of hepatic toxicity during or within four weeks after last the MIBG treatment was 0% (95% CI 0% to 9%; best-case scenario). Neither study reported cardiovascular toxicity and sialoadenitis. One study assessed long-term adverse events in some of the children: there was elevated plasma thyroid-stimulating hormone in 45% (95% CI 27% to 65%) of children; in all children, free T4 was within the age-related normal range (0%, 95% CI 0% to 15%). There were no secondary malignancies observed (0%, 95% CI 0% to 9%), but only five children survived more than four years. We identified no RCTs or CCTs comparing the effectiveness of treatment including (131)I-MIBG therapy versus treatment not including (131)I-MIBG therapy in patients with newly diagnosed HR NBL. We found two small observational studies including chilren. They had high risk of bias, and not all relevant outcome results were available. Based on the currently available evidence, we cannot make recommendations for the use of (131)I-MIBG therapy in patients with newly diagnosed HR NBL in clinical practice. More high-quality research is neede

    Upfront treatment of high-risk neuroblastoma with a combination of 131I-MIBG and topotecan

    No full text
    (131)I-metaiodobenzylguanidine ((131) I-MIBG) has a significant anti-tumor effect against neuroblastoma (NBL). Topotecan (TPT) can act as a radio-sensitizer and can up-regulate (131) I-MIBG uptake in vitro in NBL. Determine the efficacy of the combination of (131) I-MIBG with topotecan in newly diagnosed high-risk (HR) NBL patients. In a prospective, window phase II study, patients with newly diagnosed high-risk neuroblastoma were treated at diagnosis with two courses of (131) I-MIBG directly followed by topotecan (0.7 mg/m(2) for 5 days). After these two courses, standard induction treatment (four courses of VECI), surgery and myeloablative therapy (MAT) with autologous stem cell transplantation (ASCT) was given. Response was measured after two courses of (131) I-MIBG-topotecan and post MAT and ASCT. Hematologic toxicity and harvesting of stem cells were analysed. Topoisomerase-1 activity levels were analysed in primary tumor material. Sixteen patients were included in the study; median age was 2.8 years. MIBG administered activity (AA) (median and range) of the first course was 0.5 (0.4-0.6) GBq/kg (giga Becquerel/kilogram) and of the second course 0.4 (0.3-0.5) GBq/kg. The overall objective response rate (ORR) after 2 × MIBG/TPT was 57%, the primary tumor RR was 94%, and bone marrow RR was 43%. The ORR post MAT and ASCT was 57%. Hematologic grade four toxicity: after first and second (131) I-MIBG (platelets 25/33%, neutrophils 13/33%, and hemoglobin 25/7%). Topoisomerase-1 activity levels were increased in 10/10 (100%) measured tumors. Combination therapy with MIBG-topotecan is an effective window treatment in newly diagnosed high-risk neuroblastoma patient

    Neuroblastoma stage 4S: Tumor regression rate and risk factors of progressive disease

    Get PDF
    BACKGROUND: The clinical course of neuroblastoma stage 4S or MS is characterized by a high rate of spontaneous tumor regression and favorable outcome. However, the clinical course and rate of the regression are poorly understood. METHODS: A retrospective cohort study was performed, including all patients with stage 4S neuroblastoma without MYCN amplification, from two Dutch centers between 1972 and 2012. We investigated the clinical characteristics, the biochemical activity reflected in urinary catecholamine excretion, and radiological imaging to describe the kinetics of tumor regression, therapy response and outcome. RESULTS: The cohort of 31 patients reached a 10-year overall survival of 84% ± 7% (median follow-up 16 years; range, 3.3-39). During the regressive phase, liver size normalized in 91% of the patients and catecholamine excretion in 83%, both after a median of two months (liver size: range, 0-131; catecholamines: range, 0-158). The primary tumors completely regressed in 69% after 13 months (range, 6-73), and the liver architecture normalized in 52% after 15 months (range, 5-131). Antitumor treatment was given in 52% of the patients. Interestingly, regression rates were similar for treated and untreated patients. Four of seven patients < 4 weeks old died of rapid liver expansion and organ compression. Three patients progressed to stage 4, 3 to 13 months after diagnosis; all had persistently elevated catecholamines. CONCLUSION: Patients < 4 weeks old with neuroblastoma stage 4S are at risk of fatal outcome caused by progression of liver metastases. In other patients, tumor regression is characterized by a rapid biochemical normalization that precedes radiological regression

    Neuroblastoma stage 4S: Tumor regression rate and risk factors of progressive disease

    No full text
    Background: The clinical course of neuroblastoma stage 4S or MS is characterized by a high rate of spontaneous tumor regression and favorable outcome. However, the clinical course and rate of the regression are poorly understood. Methods: A retrospective cohort study was performed, including all patients with stage 4S neuroblastoma without MYCN amplification, from two Dutch centers between 1972 and 2012. We investigated the clinical characteristics, the biochemical activity reflected in urinary catecholamine excretion, and radiological imaging to describe the kinetics of tumor regression, therapy response and outcome. Results: The cohort of 31 patients reached a 10-year overall survival of 84% ± 7% (median follow-up 16 years; range, 3.3-39). During the regressive phase, liver size normalized in 91% of the patients and catecholamine excretion in 83%, both after a median of two months (liver size: range, 0-131; catecholamines: range, 0-158). The primary tumors completely regressed in 69% after 13 months (range, 6-73), and the liver architecture normalized in 52% after 15 months (range, 5-131). Antitumor treatment was given in 52% of the patients. Interestingly, regression rates were similar for treated and untreated patients. Four of seven patients < 4 weeks old died of rapid liver expansion and organ compression. Three patients progressed to stage 4, 3 to 13 months after diagnosis; all had persistently elevated catecholamines. Conclusion: Patients < 4 weeks old with neuroblastoma stage 4S are at risk of fatal outcome caused by progression of liver metastases. In other patients, tumor regression is characterized by a rapid biochemical normalization that precedes radiological regression

    Peripheral stem cell apheresis is feasible post 131iodine-metaiodobenzylguanidine-therapy in high-risk neuroblastoma, but results in delayed platelet reconstitution

    Get PDF
    Purpose: Targeted radiotherapy with 131iodine-meta-iodobenzylguanidine (131I-MIBG) is effective for neuroblastoma (NBL), although optimal scheduling during high-risk (HR) treatment is being investigated. We aimed to evaluate the feasibility of stem cell apheresis and study hematologic reconstitution after autologous stem cell transplantation (ASCT) in patients with HR-NBL treated with upfront 131I-MIBG-therapy. Experimental Design: In two prospective multicenter cohort studies, newly diagnosed patients with HR-NBL were treated with two courses of131I-MIBG-therapy, followed by an HR-induction protocol. Hematopoietic stem and progenitor cell (e.g., CD34þ cell) harvest yield, required number of apheresis sessions, and time to neutrophil (>0.5 109/L) and platelet (>20 109/L) reconstitution after ASCT were analyzed and compared with "chemotherapy-only"-treated patients. Moreover, harvested CD34þ cells were functionally (viability and clonogenic capacity) and phenotypically (CD33, CD41, and CD62L) tested before cryopreservation (n ¼ 44) and/or after thawing (n ¼ 19). Results: Thirty-eight patients (47%) were treated with131I-MIBG-therapy, 43 (53%) only with chemotherapy. Median cumulative131I-MIBG dose/kg was 0.81 GBq (22.1 mCi). Median CD34þ cell harvest yield and apheresis days were comparable in both groups. Post ASCT, neutrophil recovery was similar (11 days vs. 10 days), whereas platelet recovery was delayed in131I-MIBG- compared with chemotherapy-only-treated patients (29 days vs. 15 days, P ¼ 0.037). Testing of harvested CD34þ cells revealed a reduced post-thaw viability in the131I-MIBG-group. Moreover, the viable CD34þ population contained fewer cells expressing CD62L (L-selectin), a marker associated with rapid platelet recovery. Conclusions: Harvesting of CD34þ cells is feasible after131I-MIBG. Platelet recovery after ASCT was delayed in131I-MIBG-treated patients, possibly due to reinfusion of less viable and CD62L-expressing CD34þ cells, but without clinical complications. We provide evidence that peripheral stem cell apheresis is feasible after upfront131I-MIBG-therapy in newly diagnosed patients with NBL. However, as the harvest of131I-MIBG-treated patients contained lower viable CD34þ cell counts after thawing and platelet recovery after reinfusion was delayed, administration of131I-MIBG after apheresis is preferred
    corecore