11 research outputs found

    A communicative robot to learn about us and the world

    Get PDF
    We describe a model for a robot that learns about the world and her com-panions through natural language communication. The model supports open-domain learning, where the robot has a drive to learn about new con-cepts, new friends, and new properties of friends and concept instances. The robot tries to fill gaps, resolve uncertainties and resolve conflicts. The absorbed knowledge consists of everything people tell her, the situations and objects she perceives and whatever she finds on the web. The results of her interactions and perceptions are kept in an RDF triple store to enable reasoning over her knowledge and experiences. The robot uses a theory of mind to keep track of who said what, when and where. Accumulating knowledge results in complex states to which the robot needs to respond. In this paper, we look into two specific aspects of such complex knowl-edge states: 1) reflecting on the status of the knowledge acquired through a new notion of thoughts and 2) defining the context during which knowl-edge is acquired. Thoughts form the basis for drives on which the robot communicates. We capture episodic contexts to keep instances of objects apart across different locations, which results in differentiating the acquired knowledge over specific encounters. Both aspects make the communica-tion more dynamic and result in more initiatives by the robo

    A communicative robot to learn about us and the world

    No full text
    We describe a model for a robot that learns about the world and her com-panions through natural language communication. The model supports open-domain learning, where the robot has a drive to learn about new con-cepts, new friends, and new properties of friends and concept instances. The robot tries to fill gaps, resolve uncertainties and resolve conflicts. The absorbed knowledge consists of everything people tell her, the situations and objects she perceives and whatever she finds on the web. The results of her interactions and perceptions are kept in an RDF triple store to enable reasoning over her knowledge and experiences. The robot uses a theory of mind to keep track of who said what, when and where. Accumulating knowledge results in complex states to which the robot needs to respond. In this paper, we look into two specific aspects of such complex knowl-edge states: 1) reflecting on the status of the knowledge acquired through a new notion of thoughts and 2) defining the context during which knowl-edge is acquired. Thoughts form the basis for drives on which the robot communicates. We capture episodic contexts to keep instances of objects apart across different locations, which results in differentiating the acquired knowledge over specific encounters. Both aspects make the communica-tion more dynamic and result in more initiatives by the robo

    Modelling context awareness for a situated semantic agent

    No full text
    This paper presents a model of contextual awareness implemented for a social communicative robot Leolani. Our model starts from the assumption that robots and humans need to establish a common ground about the world they share. This is not trivial as robots make many errors and start with little knowledge. As such, the context in which communication takes place can both help and complicate the interaction: if the context is interpreted correctly it helps in disambiguating the signals, but if it is interpreted wrongly it may distort interpretation. We defined the surrounding world as a spatial context, the communication as a discourse context and the interaction as a social context, which are all three interconnected and have an impact on each other. We model the result of the interpretations as symbolic knowledge (RDF) in a triple store to reason over the result, detect conflicts, uncertainty and gaps. We explain how our model tries to combine the contexts and the signal interpretation and we mention future directions of research to improve this complex process

    Leolani: A reference machine with a theory of mind for social communication

    No full text
    Our state of mind is based on experiences and what other people tell us. This may result in conflicting information, uncertainty, and alternative facts. We present a robot that models relativity of knowledge and perception within social interaction following principles of the theory of mind. We utilized vision and speech capabilities on a Pepper robot to build an interaction model that stores the interpretations of perceptions and conversations in combination with provenance on its sources. The robot learns directly from what people tell it, possibly in relation to its perception. We demonstrate how the robotā€™s communication is driven by hunger to acquire more knowledge from and on people and objects, to resolve uncertainties and conflicts, and to share awareness of the perceived environment. Likewise, the robot can make reference to the world and its knowledge about the world and the encounters with people that yielded this knowledge

    Leolani: A robot that communicates and learns about the shared world

    No full text
    People and robots make mistakes and should therefore recognize and communicate about their ā€œimperfectnessā€ when they collaborate. In previous work [3, 2], we described a female robot model Leolani(L) that supports open-domain learning through natural language communication, having a drive to learn new information and build social relationships. The absorbed knowledge consists of everything people tell her and the situations and objects she perceives. For this demo, we focus on the symbolic representation of the resulting knowledge. We describe how L can query and reason over her knowledge and experiences as well as access the Semantic Web. As such, we envision L to become a semantic agent which people could naturally interact with.1

    Towards evolutionary predictions: Current promises and challenges

    No full text
    Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions

    Towards evolutionary predictions: Current promises and challenges

    No full text
    Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions

    Towards evolutionary predictions : current promises and challenges

    Get PDF
    Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions
    corecore