7,795 research outputs found

    The chiral condensate in neutron matter

    Get PDF
    We calculate the chiral condensate in neutron matter at zero temperature based on nuclear forces derived within chiral effective field theory. Two-, three- and four-nucleon interactions are included consistently to next-to-next-to-next-to-leading order (N3LO) of the chiral expansion. We find that the interaction contributions lead to a modest increase of the condensate, thus impeding the restoration of chiral symmetry in dense matter and making a chiral phase transition in neutron-rich matter unlikely for densities that are not significantly higher than nuclear saturation density.Comment: published version, 6 pages, 4 figure

    The atomic Bose gas in Flatland

    Full text link
    We describe a recent experiment performed with rubidium atoms (87^{87}Rb), aiming at studying the coherence properties of a two-dimensional gas of bosonic particles at low temperature. We have observed in particular a Berezinskii--Kosterlitz--Thouless (BKT) type crossover in the system, using a matter wave heterodyning technique. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of the proliferation of free vortices, in agreement with the microscopic BKT theory.Comment: To appear in "ATOMIC PHYSICS 20" Proceedings of the XX International Conference on Atomic Physics (ICAP

    Triplon mean-field analysis of an antiferromagnet with degenerate Shastry-Sutherland ground states

    Full text link
    We look into the quantum phase diagram of a spin-12\frac{1}{2} antiferromagnet on the square lattice with degenerate Shastry-Sutherland ground states, for which only a schematic phase diagram is known so far. Many exotic phases were proposed in the schematic phase diagram by the use of exact diagonalization on very small system sizes. In our present work, an important extension of this antiferromagnet is introduced and investigated in the thermodynamic limit using triplon mean-field theory. Remarkably, this antiferromagnet shows a stable plaquette spin-gapped phase like the original Shastry-Sutherland antiferromagnet, although both of these antiferromagnets differ in the Hamiltonian construction and ground state degeneracy. We propose a sublattice columnar dimer phase which is stabilized by the second and third neighbor antiferromagnetic Heisenberg exchange interactions. There are also some commensurate and incommensurate magnetically ordered phases, and other spin-gapped phases which find their places in the quantum phase diagram. Mean-field results suggest that there is always a level-crossing phase transition between two spin gapped phases, whereas in other situations, either a level-crossing or a continuous phase transition happens

    Atom chips with two-dimensional electron gases: theory of near surface trapping and ultracold-atom microscopy of quantum electronic systems

    Full text link
    We show that current in a two-dimensional electron gas (2DEG) can trap ultracold atoms <1μ<1 \mum away with orders of magnitude less spatial noise than a metal trapping wire. This enables the creation of hybrid systems, which integrate ultracold atoms with quantum electronic devices to give extreme sensitivity and control: for example, activating a single quantized conductance channel in the 2DEG can split a Bose-Einstein condensate (BEC) for atom interferometry. In turn, the BEC offers unique structural and functional imaging of quantum devices and transport in heterostructures and graphene.Comment: 5 pages, 4 figures, minor change

    Absence of magnetic order for the spin-half Heisenberg antiferromagnet on the star lattice

    Full text link
    We study the ground-state properties of the spin-half Heisenberg antiferromagnet on the two-dimensional star lattice by spin-wave theory, exact diagonalization and a variational mean-field approach. We find evidence that the star lattice is (besides the \kagome lattice) a second candidate among the 11 uniform Archimedean lattices where quantum fluctuations in combination with frustration lead to a quantum paramagnetic ground state. Although the classical ground state of the Heisenberg antiferromagnet on the star exhibits a huge non-trivial degeneracy like on the \kagome lattice, its quantum ground state is most likely dimerized with a gap to all excitations. Finally, we find several candidates for plateaux in the magnetization curve as well as a macroscopic magnetization jump to saturation due to independent localized magnon states.Comment: new extended version (6 pages, 6 figures) as published in Physical Review

    More Benefits of Semileptonic Rare B Decays at Low Recoil: CP Violation

    Full text link
    We present a systematic analysis of the angular distribution of Bbar -> Kbar^\ast (-> Kbar pi) l^+ l^- decays with l = e, mu in the low recoil region (i.e. at high dilepton invariant masses of the order of the mass of the b-quark) to account model-independently for CP violation beyond the Standard Model, working to next-to-leading order QCD. From the employed heavy quark effective theory framework we identify the key CP observables with reduced hadronic uncertainties. Since some of the CP asymmetries are CP-odd they can be measured without B-flavour tagging. This is particularly beneficial for Bbar_s,B_s -> phi(-> K^+ K^-) l^+ l^- decays, which are not self-tagging, and we work out the corresponding time-integrated CP asymmetries. Presently available experimental constraints allow the proposed CP asymmetries to be sizeable, up to values of the order ~ 0.2, while the corresponding Standard Model values receive a strong parametric suppression at the level of O(10^-4). Furthermore, we work out the allowed ranges of the short-distance (Wilson) coefficients C_9,C_10 in the presence of CP violation beyond the Standard Model but no further Dirac structures. We find the Bbar_s -> mu^+ mu^- branching ratio to be below 9*10^-9 (at 95% CL). Possibilities to check the performance of the theoretical low recoil framework are pointed out.Comment: 18 pages, 3 fig.; 1 reference and comment on higher order effects added; EOS link fixed. Minor adjustments to Eqs 4.1-4.3 to match the (lower) q^2-cut as given in paper. Main results and conclusions unchanged; v3+v4: treatment of exp. uncert. in likelihood-function in EOS fixed and constraints from scan on C9,C10 updated (Fig 2,3 and Eqs 3.2,3.3). Main results and conclusions absolutely unchange

    Spin Waves in Quantum Antiferromagnets

    Full text link
    Using a self-consistent mean-field theory for the S=1/2S=1/2 Heisenberg antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for the dispersion. It is exact in one dimension (d=1d=1) and agrees well with numerical results in d=2d=2. With an expansion in powers of the inverse coordination number 1/Z1/Z (Z=2dZ=2d) we investigate if this expression can be {\em exact} for all dd. The projection method of Mori-Zwanzig is used for the {\em dynamical} spin susceptibility. We find that the expression of Kr\"uger and Schuck deviates in order 1/Z21/Z^2 from our rigorous result. Our method is generalised to arbitrary spin SS and to models with easy-axis anisotropy \D. It can be systematically improved to higher orders in 1/Z1/Z. We clarify its relation to the 1/S1/S expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette

    Contrast Interferometry Using Bose-Einstein Condensates to Measure h/m and the Fine Structure Constant

    Full text link
    The kinetic energy of an atom recoiling due to absorption of a photon was measured as a frequency using an interferometric technique called ``contrast interferometry''. Optical standing wave pulses were used as atom-optical elements to create a symmetric three-path interferometer with a Bose-Einstein condensate. The recoil phase accumulated in different paths was measured using a single-shot detection technique. The scheme allows for additional photon recoils within the interferometer and its symmetry suppresses several random and systematic errors including those from vibrations and ac Stark shifts. We have measured the photon recoil frequency of sodium to 77 ppm precision, using a simple realization of this scheme. Plausible extensions should yield a sufficient precision to bring within reach a ppb-level determination of h/mh/m and the fine structure constant α\alpha
    corecore