63 research outputs found

    Impact of standardized computed tomographic angiography for minimally invasive mitral and tricuspid valve surgery

    No full text
    Background!#!Femoral cannulation for extracorporeal circulation (ECC) is a standard procedure for minimally invasive cardiac surgery (MICS) of the atrio-ventricular valves. Vascular pathologies may cause serious complications. Preoperative computed tomography-angiography (CT-A) of the aorta, axillary and iliac arteries was implemented at our department.!##!Methods!#!Between July 2017 and December 2018 all MICS were retrospectively reviewed (n = 143), and divided into 3 groups.!##!Results!#!In patients without CT (n = 45, 31.5%) ECC was applied via femoral arteries (91.1% right, 8.9% left). Vascular related complications (dissection, stroke, coronary and visceral ischemia, related in-hospital death) occurred in 3 patients (6.7%). In patients with non-contrast CT (n = 35, 24.5%) only femoral cannulation was applied (94.3% right) with complications in 4 patients (11.4%). CT-angiography (n = 63, 44.1%) identified 12 patients (19.0%) with vulnerable plaques, 7 patients (11.1%) with kinking of iliac vessels, 41 patients (65.1%) with multiple calcified plaques and 5 patients (7.9%) with small femoral artery diameter (d ≤ 6 mm). In 7 patients (11.1%) pathologic findings led to alternative cannulation via right axillary artery, additional 4 patients (6.3%) were cannulated via left femoral artery. Only 2 patients (3.2%) suffered from complications.!##!Conclusions!#!CT-A identifies vascular pathologies otherwise undetectable in routine preoperative preparation. A standardized imaging protocol may help to customize the operative strategy

    Microparticle-Induced Coagulation Relates to Coronary Artery Atherosclerosis in Severe Aortic Valve Stenosis

    No full text
    <div><p>Background</p><p>Circulating microparticles (MPs) derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.</p><p>Methods</p><p>In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC) as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC) by computed tomography. Thrombin-antithrombin complex (TATc) levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.</p><p>Results</p><p>Patients with CAC score below the median were classified as patients with <i>low</i> CAC, patients with CAC Score above the median as <i>high</i> CAC. In patients with <i>high</i> CAC compared to patients with <i>low</i> CAC we detected higher levels of TATc, platelet-derived MPs (PMPs), endothelial-derived MPs (EMPs) and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with <i>high</i> and <i>low</i> CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.</p><p>Conclusion</p><p>In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.</p></div

    Microparticle-Induced Coagulation Relates to Coronary Artery Atherosclerosis in Severe Aortic Valve Stenosis

    No full text
    Background Circulating microparticles (MPs) derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification. Methods In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC) as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC) by computed tomography. Thrombin-antithrombin complex (TATc) levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation. Results Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs), endothelial-derived MPs (EMPs) and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation. Conclusion In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.</p

    The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting.

    No full text
    One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC). The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP) in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group). In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG), whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold) compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting
    • …
    corecore