2,604 research outputs found

    Hysteresis effects in rotating Bose-Einstein condensates

    Full text link
    We study the formation of vortices in a dilute Bose-Einstein condensate confined in a rotating anisotropic trap. We find that the number of vortices and angular momentum attained by the condensate depends upon the rotation history of the trap and on the number of vortices present in the condensate initially. A simplified model based on hydrodynamic equations is developed, and used to explain this effect in terms of a shift in the resonance frequency of the quadrupole mode of the condensate in the presence of a vortex lattice. Differences between the spin-up and spin-down response of the condensate are found, demonstrating hysteresis phenomena in this system.Comment: 16 pages, 7 figures; revised after referees' report

    Heavy Quark Production and PDF's Subgroup Report

    Get PDF
    We present a status report of a variety of projects related to heavy quark production and parton distributions for the Tevatron Run II.Comment: Latex. 8 pages, 7 eps figures. Contribution to the Physics at Run II Workshops: QCD and Weak Boson Physic

    Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy

    Full text link
    The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.Comment: Updated version. Free download at Nature Comm. website (doi below

    Spinon localization in the heat transport of the spin-1/2 ladder compound (C5_5H12_{12}N)2_2CuBr4_4

    Get PDF
    We present experiments on the magnetic field-dependent thermal transport in the spin-1/2 ladder system (C5_5H12_{12}N)2_2CuBr4_4. The thermal conductivity Îș(B)\kappa(B) is only weakly affected by the field-induced transitions between the gapless Luttinger-liquid state realized for Bc1<B<Bc2B_{c1}< B < B_{c2} and the gapped states, suggesting the absence of a direct contribution of the spin excitations to the heat transport. We observe, however, that the thermal conductivity is strongly suppressed by the magnetic field deeply within the Luttinger-liquid state. These surprising observations are discussed in terms of localization of spinons within finite ladder segments and spinon-phonon umklapp scattering of the predominantly phononic heat transport.Comment: 4 pages, 3 figure

    Color-Octet Contributions to J/ψJ/\psi Photoproduction

    Full text link
    We have calculated the leading color-octet contributions to the production of J/ψJ/\psi particles in photon-proton collisions. Using the values for the color-octet matrix elements extracted from fits to prompt J/ψJ/\psi data at the Tevatron, we demonstrate that distinctive color-octet signatures should be visible in J/ψJ/\psi photoproduction. However, these predictions appear at variance with recent experimental data obtained at HERA, indicating that the phenomenological importance of the color-octet contributions is smaller than expected from theoretical considerations and suggested by the Tevatron fits.Comment: 10 pages, LaTeX, epsfig, 4 figure

    Spin susceptibility of charge ordered YBa2Cu3Oy across the upper critical field

    Full text link
    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin\chi_{spin} of the CuO2 planes at low temperature in charge ordered YBa2Cu3Oy. We find that χspin\chi_{spin} increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 to 40 T. This result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat. Commun. 5, 3280 (2014)] and with the interpretation that the charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H)\chi_{spin}(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDWorder. Above Hc2, the relatively low values of χspin\chi_{spin} at T=2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.Comment: To appea

    Quantum transport and momentum conserving dephasing

    Full text link
    We study numerically the influence of momentum-conserving dephasing on the transport in a disordered chain of scatterers. Loss of phase memory is caused by coupling the transport channels to dephasing reservoirs. In contrast to previously used models, the dephasing reservoirs are linked to the transport channels between the scatterers, and momentum conserving dephasing can be investigated. Our setup provides a model for nanosystems exhibiting conductance quantization at higher temperatures in spite of the presence of phononic interaction. We are able to confirm numerically some theoretical predictions.Comment: 7 pages, 4 figure

    Charm-sea Contribution to High-p_T \psi Production at the Fermilab Tevatron

    Full text link
    The direct production of J/ψ(ψâ€Č)J/\psi(\psi') at large transverse momentum, pT≫MJ/ψp_T \gg M_{J/\psi}, at the Fermilab Tevatron is revisited. It is found that the sea-quark initiated processes dominate in the high-pTp_T region within the framework of color-singlet model, which is not widely realized. We think this finding is enlightening for further investigation on the charmonium production mechanism.Comment: Conclusions not changed, to appear in J. of Phys.
    • 

    corecore