40 research outputs found

    A class of quadratic deformations of Lie superalgebras

    Full text link
    We study certain Z_2-graded, finite-dimensional polynomial algebras of degree 2 which are a special class of deformations of Lie superalgebras, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. We derive the equivalent of the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate in detail one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.Comment: 26pp, LaTeX. Original title: "Finite dimensional quadratic Lie superalgebras"; abstract re-worded; text clarified; 3 references added; rearrangement of minor appendices into text; new subsection 4.

    Dirac Operators on Quantum Projective Spaces

    Full text link
    We construct a family of self-adjoint operators D_N which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space CP_q(l), for any l>1 and 0<q<1. They provide 0^+ dimensional equivariant even spectral triples. If l is odd and N=(l+1)/2, the spectral triple is real with KO-dimension 2l mod 8.Comment: 54 pages, no figures, dcpic, pdflate

    Phase Space as Arena for Atomic Motion in a Quantized Light Field

    No full text
    We describe the motion of an atom in a quantized light field using the concept of the Wigner distribution in phase space. This approach provides a pictorial explanation of the deflection and focusing of the atomic beam

    On the Hochschild (co)homology of quantum homogeneous spaces

    No full text
    The recent result of Brown and Zhang establishing Poincaré duality in the Hochschild (co)homology of a large class of Hopf algebras is extended to right coideal subalgebras over which the Hopf algebra is faithfully flat, and applied to the standard Podleś quantum 2-sphere
    corecore