571 research outputs found
Dramatic Mobility Enhancements in Doped SrTiO3 Thin Films by Defect Management
We report bulk-quality n-type SrTiO3 (n-SrTiO3) thin films fabricated by
pulsed laser deposition, with electron mobility as high as 6600 cm2 V-1 s-1 at
2 K and carrier density as low as 2.0 x 10^18cm-3 (~ 0.02 at. %), far exceeding
previous pulsed laser deposition films. This result stems from precise
strontium and oxygen vacancy defect chemistry management, providing a general
approach for defect control in complex oxide heteroepitaxy.Comment: 13 pages, 4 figure
Temperature Dependent Polarity Reversal in Au/Nb:SrTiO3 Schottky Junctions
We have observed temperature-dependent reversal of the rectifying polarity in
Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics
we have found that the permittivity of SrTiO3 near the interface exhibits
temperature dependence opposite to that observed in the bulk, significantly
reducing the barrier width. At low temperature, tunneling current dominates the
junction transport due both to such barrier narrowing and to suppressed thermal
excitations. The present results demonstrate that novel junction properties can
be induced by the interface permittivity
Fermi surface and superconductivity in low-density high-mobility {\delta}-doped SrTiO3
The electronic structure of low-density n-type SrTiO3 delta-doped
heterostructures is investigated by angular dependent Shubnikov-de Haas
oscillations. In addition to a controllable crossover from a three- to
two-dimensional Fermi surface, clear beating patterns for decreasing dopant
layer thicknesses are found. These indicate the lifting of the degeneracy of
the conduction band due to subband quantization in the two-dimensional limit.
Analysis of the temperature-dependent oscillations shows that similar effective
masses are found for all components, associated with the splitting of the light
electron pocket. The dimensionality crossover in the superconducting state is
found to be distinct from the normal state, resulting in a rich phase diagram
as a function of dopant layer thickness.Comment: 4 pages, 5 figures, submitted for publicatio
Temperature dependent magnetotransport around = 1/2 in ZnO heterostructures
The sequence of prominent fractional quantum Hall states up to =5/11
around =1/2 in a high mobility two-dimensional electron system confined at
oxide heterointerface (ZnO) is analyzed in terms of the composite fermion
model. The temperature dependence of \Rxx oscillations around =1/2
yields an estimation of the composite fermion effective mass, which increases
linearly with the magnetic field. This mass is of similar value to an enhanced
electron effective mass, which in itself arises from strong electron
interaction. The energy gaps of fractional states and the temperature
dependence of \Rxx at =1/2 point to large residual interactions between
composite fermions.Comment: 5 pages, 4 Figure
Dominant mobility modulation by the electric field effect at the LaAlO_3 / SrTiO_3 interface
Caviglia et al. [Nature (London) 456, 624 (2008)] have found that the
superconducting LaAlO_3 / SrTiO_3 interface can be gate modulated. A central
issue is to determine the principal effect of the applied electric field. Using
magnetotransport studies of a gated structure, we find that the mobility
variation is almost five times as large as the sheet carrier density.
Furthermore, superconductivity can be suppressed at both positive and negative
gate bias. These results indicate that the relative disorder strength strongly
increases across the superconductor-insulator transition.Comment: 4 pages, 4 figure
Intrinsic spin-orbit coupling in superconducting {\delta}-doped SrTiO3 heterostructures
We report the violation of the Pauli limit due to intrinsic spin-orbit
coupling in SrTiO3 heterostructures. Via selective doping down to a few
nanometers, a two-dimensional superconductor is formed, geometrically
suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the
robust in-plane superconducting upper critical field, exceeding the Pauli limit
by a factor of 4. Transport scattering times several orders of magnitude higher
than for conventional thin film superconductors enables a new regime to be
entered, where spin-orbit coupling effects arise non-perturbatively.Comment: main text 4 pages with 4 figures, supplemental material 2 pages with
2 figure, submitted for publicatio
Characterization of the Schottky Barrier in SrRuO3/Nb:SrTiO3 Junctions
Internal photoemission spectroscopy was used to determine the Schottky
barrier height in rectifying SrRuO3/Nb-doped SrTiO3 junctions for 0.01 wt % and
0.5 wt % Nb concentrations. Good agreement was obtained with the barrier height
deduced from capacitance-voltage measurements, provided that a model of the
nonlinear permittivity of SrTiO3 was incorporated in extrapolating the built-in
potential, particularly for high Nb concentrations. Given the generic
polarizability of perovskites under internal/external electric fields, internal
photoemission provides a valuable independent probe of the interface electronic
structure.Comment: 15 pages, 3 figure
Electron scattering times in ZnO based polar heterostructures
The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10⁶ cm²/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors
Temperature-Dependent Magnetotransport around ν=1/2 in ZnO Heterostructures
The sequence of prominent fractional quantum Hall states up to ν = 5/11 around ν = 1/2 in a high-mobility two-dimensional electron system confined at oxide heterointerface (ZnO) is analyzed in terms of the composite fermion model. The temperature dependence of R_(xx) oscillations around ν = 1/2 yields an estimation of the composite fermion effective mass, which increases linearly with the magnetic field. This mass is of similar value to an enhanced electron effective mass, which in itself arises from strong electron interaction. The energy gaps of fractional states and the temperature dependence of R_(xx) at ν = 1/2 point to large residual interactions between composite fermions
Temperature-Dependent Magnetotransport around ν=1/2 in ZnO Heterostructures
The sequence of prominent fractional quantum Hall states up to ν = 5/11 around ν = 1/2 in a high-mobility two-dimensional electron system confined at oxide heterointerface (ZnO) is analyzed in terms of the composite fermion model. The temperature dependence of R_(xx) oscillations around ν = 1/2 yields an estimation of the composite fermion effective mass, which increases linearly with the magnetic field. This mass is of similar value to an enhanced electron effective mass, which in itself arises from strong electron interaction. The energy gaps of fractional states and the temperature dependence of R_(xx) at ν = 1/2 point to large residual interactions between composite fermions
- …