43 research outputs found
Induction of Autoimmunity in a Bleomycin-Induced Murine Model of Experimental Systemic Sclerosis: An Important Role for CD4+ T Cells
Systemic sclerosis (SSc) is an autoimmune disease characterized by the excessive deposition of collagen in the skin or other organs and the production of specific antinuclear antibodies (ANAs). Recently, bleomycin (BLM)-induced experimental scleroderma was reported in a murine model. Here, we present further development of this model and suggest that it is appropriate for the analysis of human diffuse type SSc. BLM was injected into the shaved backs of C3H or BALB/c mice (100μg/mouse) 5 days per week for 3 weeks. Skin fibrosis was confirmed and pathological changes were seen in the lower part of the esophagus and stomach similar to those seen in SSc. The sera from these mice had autoantibodies specific to the damaged tissues and ANAs. Transfer of CD4+ T cells from BLM-treated BALB/c mice induced the same pathological changes and antibody production in untreated-BALB/c nude mice. Hence, tissue fibrosis and the production of ANAs are probably associated with CD4+ T-cell activity in this model. In conclusion, this model will be valuable for investigating the relationship between tissue fibrosis and abnormalities of the immune system
c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines
Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma
RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy
Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV), which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK) and the PI3K/PTEN/AKT (AKT) signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression
Molecular Network Associated with MITF in Skin Melanoma Development and Progression
Various environmental and genetic factors affect the development and progression of skin cancers including melanoma. Melanoma development is initially triggered by environmental factors including ultraviolet (UV) light, and then genetic/epigenetic alterations occur in skin melanocytes. These first triggers alter the conditions of numerous genes and proteins, and they induce and/or reduce gene expression and activate and/or repress protein stability and activity, resulting in melanoma progression. Microphthalmia-associated transcription factor (MITF) is a master regulator gene of melanocyte development and differentiation and is also associated with melanoma development and progression. To find better approaches to molecular-based therapies for patients, understanding MITF function in skin melanoma development and progression is important. Here, we review the molecular networks associated with MITF in skin melanoma development and progression
A Potent Inhibitor of SIK2, 3, 3′, 7-Trihydroxy-4′-Methoxyflavon (4′-O-Methylfisetin), Promotes Melanogenesis in B16F10 Melanoma Cells
Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 4′-methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt inducible kinase 2 (SIK2) as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding protein (CREB)-specific coactivator 1 (TORC1). Using an in vitro kinase assay targeting SIK2, we identified fisetin as a candidate inhibitor, possibly being capable of promoting melanogenesis. However, fisetin neither inhibited the CREB-inhibitory activity of SIK2 nor promoted melanogenesis in B16F10 melanoma cells. Conversely, mono-methyl-flavonoids, such as diosmetin (4′-O-metlylluteolin), efficiently inhibited SIK2 and promoted melanogenesis in this cell line. The cAMP-CREB system is impaired in Ay/a mice and these mice have yellow hair as a result of pheomelanogenesis, while Sik2+/−; Ay/a mice also have yellow hair, but activate eumelanogenesis when they are exposed to CREB stimulators. Feeding Sik2+/−; Ay/a mice with diets supplemented with fisetin resulted in their hair color changing to brown, and metabolite analysis suggested the presence of mono-methylfisetin in their feces. Thus, we decided to synthesize 4′-O-methylfisetin (4′MF) and found that 4′MF strongly induced melanogenesis in B16F10 melanoma cells, which was accompanied by the nuclear translocation of TORC1, and the 4′-O-methylfisetin-induced melanogenic programs were inhibited by the overexpression of dominant negative TORC1. In conclusion, compounds that modulate SIK2 cascades are helpful to regulate melanogenesis via TORC1 without affecting cAMP levels, and the combined analysis of Sik2+/− mice and metabolites from these mice is an effective strategy to identify beneficial compounds to regulate CREB activity in vivo
Transient decline in hippocampal theta activity during the acquisition process of the negative patterning task.
Hippocampal function is important in the acquisition of negative patterning but not of simple discrimination. This study examined rat hippocampal theta activity during the acquisition stages (early, middle, and late) of the negative patterning task (A+, B+, AB-). The results showed that hippocampal theta activity began to decline transiently (for 500 ms after non-reinforced stimulus presentation) during the late stage of learning in the negative patterning task. In addition, this transient decline in hippocampal theta activity in the late stage was lower in the negative patterning task than in the simple discrimination task. This transient decline during the late stage of task acquisition may be related to a learning process distinctive of the negative patterning task but not the simple discrimination task. We propose that the transient decline of hippocampal theta activity reflects inhibitory learning and/or response inhibition after the presentation of a compound stimulus specific to the negative patterning task
Comparison of hippocampal theta power between correct-response and incorrect-response trials.
<p>This figure shows the hippocampal theta power between trials with correct lever press response for RFT and incorrect lever press responses for non-RFTs during the late stage of the negative patterning task. The 0 period was lever press timing. The analysis period from 1250 ms before lever press to 1500 ms after lever press was divided into 11 250-ms epochs. The 250-ms period from -1250 to -1000 ms was used as the baseline, and the relative theta activity for each period was calculated as follows: relative theta activity of each period = theta activity of each period/theta activity during the baseline period.</p